• Title/Summary/Keyword: Injection uniformity

Search Result 111, Processing Time 0.024 seconds

Numerical Study on Optimization of the SCR Process Design in Horizontal HRSG for NOx Reduction (수평형 폐열회수보일러 배기탈질 SCR시스템의 최적설계를 위한 수치해석적 연구)

  • Kim, Kyeongsook;Lee, Kyeongok
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1481-1498
    • /
    • 2013
  • The SCR (selective catalytic reduction) system is highly-effective technique for NOx reduction from exhaust gases. In this study, the effects of the direction and size of nozzle and the ammonia injection concentration on the performance of SCR system are analyzed by using the computational fluid dynamics method. When the nozzle is arranged in zigzaged direction which is normal to exhausted gas flow, it is shown that the uniformity of gas flow and the NH3/NO molar ratio is improved remarkably. With the change of the ammonia injection concentration from 0.2 vol%(wet) to 1.0 vol%(wet), the uniformity of gas flow shows a good results. As the size of nozzle diameter changes from 6 mm to 12 mm, the uniformity of gas flow is maintained well. It is shown that the uniformity of the $NH_3/NO$ molar ratio becomes better with decreasing the ammonia injection concentration and the size of nozzle diameter.

Cooling Performance Enhancement of a Rocket Engine Injector Face Plate (로켓엔진 분사면의 냉각성능 향상)

  • Cho Won Kook;Seol Woo Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.92-100
    • /
    • 2005
  • An optimal fuel manifold is suggested to improve the cooling performance of an injector face plate. The cooling performance at the center area of the injector face plate is to be augmented while the spatial injection uniformity is maintained. The comparison of the cooling performance of f candidates gives the conclusion that the dividing plate from 2-3 injector .ow to 9-10 injector. row is an optimal. The maximum face plate temperature decreases by 27$\%$ while the injection uniformity is close to that of the original design. The pressure drop in the fuel manifold of the optimal design is also same as the original design.

Study of Cooling Performance Enhancement on Injector Face Plate of Rocket Engine (로켓엔진 분사면의 냉각성능 향상에 관한 연구)

  • Cho Won Kook;Seol Woo Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.215-218
    • /
    • 2005
  • An optimal fuel manifold is suggested to improve the cooling performance of injector face plate. The cooling performance at the center area of the injector face plate is to be augmented while the spatial injection uniformity is maintained. The comparison of the cooling performance of 7 candidates gives the conclusion that the dividing plate from 2-3 injector row to 9-10 injector row is an optimal. The maximum face plate temperature decreases by $27\%$ while the injection uniformity is close to that of the original design. The pressure drop in the fuel manifold of the optimal design is also same as the original design.

  • PDF

CFD Analysis on the Fresh Air Distribution in the Catalytic Converter Varying Secondary Air Injector Position (2차 공기 분사 위치에 따른 촉매 내 공급 공기 분포에 대한 전산 유동해석)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.31-36
    • /
    • 2010
  • SAI(Secondary Air Injection) system has been studied widely as one of the promising countermeasure for reducing HC emission at cold start. In this paper, in order to find out the optimal position of SAI, computational thermal fluid analysis on exhaust system adapted SAI system is performed using commercial 3-D CFD code, CFX. The present results showed that SAI position strongly affected the uniformity of air distribution in front of catalyst. And also through the decision process of optimal position of SAI, new index, uniformity of air distribution($U_{\phi}$) is proposed to define it quantitively. Because $U_{\phi}$ is very simple equation and similar with flow uniformity, it is very easy to figure out the physical meaning and to apply it to practices. Finally, we applied the index $U_{\phi}$ to the decision process of the optimal position of SAI, so that we could get the clear comparison results.

Simulation Study of Injection-Molded Light Guide Plates for Improving Luminance Uniformity Based on the Measured Replication Quality of Micro-Patterns for LED TV Backlight

  • Joo, Byung-Yun;Ko, Jae-Hyeon
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.159-164
    • /
    • 2015
  • In the injection-molded light guide plate the replication quality, i.e. the reproduction accuracy, of micro-patterns should be high and uniform over the entire surface area. However technical difficulty in meeting the necessary replication quality arises as the plate size becomes large for TV applications. We propose a simulation technique to optimize the distribution of micro-patterns on a 55-inch injection molded light guide plate considering non-ideal replication quality of micro-patterns. The luminance uniformity could be improved by more than 16% by optimizing the pattern distribution in spite of the same replication quality.

Effect of liquid viscosity on the degree of uniformity of drops from swirl spray nozzles (와류 분무 노즐에 의해 형성되는 액적들의 균일도에 액체의 점도가 미치는 영향)

  • 이상용;김인구;조한권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.538-546
    • /
    • 1989
  • Effect of liquid viscosity was studied experimentally on the drop size distributions of the liquid sprays from swirl atomizers. Glycerine-Water mixtures were used as test fluids for the experiments. Drop sizes of the liquid sprays were measured with the light scattering method. The concept of the standard deviation was introduced to represent the degree of uniformity of the drop size distributions. Experimental results show that the spray drops become coarser and less uniform with the liquid of higher viscosity. The effect of viscosity on the Sauter mean diameter and the standard deviation appeared to be more significant with the lower injection pressure. It was also confirmed that the Sauter mean diameter increases with the increase of the liquid viscosity and with the decrease of the injection pressure.

CFD Analysis on Gas Injection System of Solid SCR for NOx Reduction of Exhaust Emissions in Diesel Engine (디젤엔진 배출가스의 질소산화물 저감을 위한 Solid SCR용 가스분사 시스템의 전산유체해석 연구)

  • Lee, Hoyeol;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.73-83
    • /
    • 2014
  • CFD(computational fluid dynamics) model is developed to simulate direct injection of ammonia gas phase from ammonia transporting materials into the SCR catalyst in the exhaust pipe of the engine with solid SCR. Configurations of one-hole and four-hole nozzle, circumferential type, porous tube type, and the effect of mixer configurations which commonly used in liquid injection of AdBlue are considered for complex geometries. Mal-distribution index related to concentration of ammonia gas, flow uniformity index related to velocity distribution, and pressure drop related to flow resistance are compared for different configurations of complex geometries at the front section of SCR catalyst. These results are used to design the injection system of ammonia gas phase for solid SCR of target vehicle.

Analysis of impingement mixing for coating in injection mold (사출금형 안에서 코팅을 위한 충돌혼합에 관한 해석)

  • Kim, Seul-Woo;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • In-mold Coating is a method that can simultaneously perform injection molding and surface coating in injection mold. The material used for coating is two-component polyurethane which is composed of polyol and isocyanate. L-type mixing head can be used to mix polyol and isocyanate uniformly, and inject them inside the mold cavity. The surface quality of the injection molded products by using in-mold coating depends on the mixing uniformity between main agent and hardener. In this study, flow analysis was performed to design a mixing head for uniform mixing of two-component polyurethane. Especially the effects of design parameters of mixing head on mixing uniformity and nozzle pressure were investigated. The parameters of mixing head were mixing chamber diameter, cleaning cylinder diameter, nozzle alignment angle in the horizontal and vertical direction, and cleaning piston position. It was found that optimal design values were mixing chamber diameter of 3.5 mm, cleaning cylinder diameter of 5.0 mm, nozzle horizontal/vertical alignment angles of 140°/160°, and cleaning piston position of 1.8 mm. The optimal values would be used to develop a two-component mixing head achieving an uniform mixing for in-mold coating.

A Study on the Phosphorous Concentration and Rs Property of the Doped Polysilicon by LPCVD Method of Batch type (Batch 형태 LPCVD법에 의한 폴리실리콘의 인농도 및 Rs 특성에 관한 연구)

  • 정양희;김명규
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.195-202
    • /
    • 1998
  • The LPCVD system of batch type for the massproduction of semiconductor fabrication has a problem of phosphorous concentration uniformity in the boat. In this paper we study an improvement of the uniformity for phosphorous concentration and sheet resistance. These property was improved by using the nitrogen process and modified long nozzle for gas injection tube in the doped polysilicon deposition system. The phosphorous concentration and its uniformity for polysilicon film are measured by XRF(X-ray Fluorescence) for the conventional process condition and nitrogen process. In conventional process condition, the phosphorous concentration, it uniformity and sheet resistance for polysilicon film are in the range of 3.8~5.4$\times$10\ulcorner atoms/㎤, 17.3% and 59~$\Omega$/ , respectively. For the case of nitrogen process the corresponding measurements exhibited between 4.3~5.3$\times$10\ulcorner atoms/㎤, 10.6% and 58~81$\Omega$/ . We find that in the nitrogen process the uniformity of phosphorous concentration improved compared with conventional process condition, however, the sheet resistance in the up zone of the boat increased about 12 $\Omega$/ . In modified long nozzle, the phosphorous concentration, its uniformity and sheet resistance for polysilicon films are in the range of 4.5~5.1$\times$10\ulcorner atoms/㎤, 5.3% and 60~65$\Omega$/ respectively. Annealing after $N_2$process gives the increment of grain size and the decrement of roughness. Modification of nozzle gives the increment of injection amount of PH$_3$. Both of these suggestion result in the stable phosphorous concentration and sheet resistance. The results obtained in this study are also applicable to process control of batch type system for memory device fabrication.

  • PDF

Mixer design for improving the injection uniformity of the reduction agent in SCR system

  • Hwang, Woohyeon;Lee, Kyungok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • In this paper, we propose a method to optimize the geometry and installation position of the mixer in the selective catalytic reduction (SCR) system by computational fluid dynamic(CFD). Using the commercial CFD software of CFD-ACE+, the flow dynamics of the flue gas was numerically analyzed for improving the injection uniformity of the reduction agent. Numerical analysis of the mixed gas heat flow into the upstream side of the primary SCR catalyst layer was performed when the denitrification facility was operated. The characteristics such as the flow rate, temperature, pressure loss and ammonia concentration of the mixed gas consisting of the flue gas and the ammonia reducing gas were examined at the upstream of the catalyst layer of SCR. The temperature difference on the surface of the catalyst layer is very small compared to the flow rate of the exhaust gas, and the temperature difference caused by the reducing gas hardly occurs because the flow rate of the reducing gas is very small. When the mixed gas is introduced into the SCR reactor, there is a slight tendency toward one wall. When the gas passes through the catalyst layer having a large pressure loss, the flow angle of the exhaust gas changes because the direction of the exhaust gas changes toward a smaller flow. Based on the uniformity of the flow rate of the mixed gas calculated at the SCR, it is judged that the position of the test port reflected in the design is proper.