• 제목/요약/키워드: Injection time

Search Result 2,737, Processing Time 0.037 seconds

Establishment of Injection Protocol of Contrast Material in Pulmonary Angiography using Test Bolus Method and 16-Detector-Row Computed Tomography in Normal Beagle Dogs

  • Choi, Sooyoung;Kwon, Younghang;Park, Hyunyoung;Kwon, Kyunghun;Lee, Kija;Park, Inchul;Choi, Hojung;Lee, Youngwon
    • Journal of Veterinary Clinics
    • /
    • v.34 no.5
    • /
    • pp.330-334
    • /
    • 2017
  • The aim of this study was to establish an injection protocol of a test bolus and a main bolus of contrast material for computed tomographic pulmonary angiography (CTPA) for visualizing optimal pulmonary arteries in normal beagle dogs. CTPA using a test bolus method from either protocol A or B were performed in each of four normal beagle dogs. In protocol A, CTPA was conducted with a scan duration for around 8 s, setting the contrast enhancement peak of the pulmonary trunk in the middle of the scan duration. The arrival time to the contrast enhancement peak was predicted from a previous dynamic scan using a test bolus (150 mg iodine/kg) injected with the same injection duration using for a main bolus (450 mg iodine/kg). In protocol B, CTPA was started at the predicted appearance time of contrast material in the pulmonary trunk based on a previous dynamic scan using a test bolus injected with the same injection rate as a main bolus. CTPA using protocol A showed the optimal opacification of the pulmonary artery with pulmonary venous contamination. Proper CTPA images in the absence of venous contamination were obtained in protocol B. CTPA with a scan duration for 8 s should be started at the appearance time of contrast enhancement in the pulmonary trunk, which can be identified exactly when a test bolus is injected at the same injection rate used for the main bolus.

Reduction of Design Variables for Automated Optimization of Injection Mold Cooling Circuit (사출금형 냉각회로 자동최적화를 위한 설계변수 감소 방안)

  • Rhee, B.O.;Choi, J.H.;Tae, J.S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.417-422
    • /
    • 2009
  • The injection mold cooling circuit optimization was studied with a response surface method in the previous research. It took so much time to find an optimum solution for a large product due to an extensive amount of calculation time for the CAE analysis. In order to use the optimization technique in the actual design process, the calculation time should be much reduced. In this study, we tried to reduce the number of design variables with the concept of the close relationship between the depth and the distance of cooling channel. The optimum ratio of the distance to the depth of cooling channels for a 2-dimensional problem was 2.0 so that the optimum ratio was again sought out for 4 large automotive parts. Therefore, the number of design variables for the cooling circuit optimization can be reduced in half, resulting in much faster running time for the optimization as a design tool.

  • PDF

Counter Measures by using Execution Plan Analysis against SQL Injection Attacks (실행계획 분석을 이용한 SQL Injection 공격 대응방안)

  • Ha, Man-Seok;Namgung, Jung-Il;Park, Soo-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.76-86
    • /
    • 2016
  • SQL Injection attacks are the most widely used and also they are considered one of the oldest traditional hacking techniques. SQL Injection attacks are getting quite complicated and they perform a high portion among web hacking. The big data environments in the future will be widely used resulting in many devices and sensors will be connected to the internet and the amount of data that flows among devices will be highly increased. The scale of damage caused by SQL Injection attacks would be even greater in the future. Besides, creating security solutions against SQL Injection attacks are high costs and time-consuming. In order to prevent SQL Injection attacks, we have to operate quickly and accurately according to this data analysis techniques. We utilized data analytics and machine learning techniques to defend against SQL Injection attacks and analyzed the execution plan of the SQL command input if there are abnormal patterns through checking the web log files. Herein, we propose a way to distinguish between normal and abnormal SQL commands. We have analyzed the value entered by the user in real time using the automated SQL Injection attacks tools. We have proved that it is possible to ensure an effective defense through analyzing the execution plan of the SQL command.

A Study on The Reduction of Cycle Time in Injection Molding Process of The Monitor Backcover (Monitor Backcover의 사이클 타임 단축에 관한 연구)

  • Yoon K. H.;Kim J. K.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.368-374
    • /
    • 2005
  • In the present study we used a diagrammatic analysis of 6 sigma quality control and Taguchi method for injection molding of monitor back-cover, evaluated the influence on the cycle time with part design, mold design, molding process and standardization activity involving design and molding, adopted analysis of sensitivity and effective factors of the part design and molding process conditions for productivity, identified main design molding factors. The contributing factors for the final cycle time could be enumerated as follows; the thickness of hot spot, main nominal part thickness, coolant inlet temperature, melt temperature and cooling line layout, etc.. As a first step, all the critical factors of design process applied to the current monitor housing were investigated through 6 sigma process. Thereafter, the optimal and better critical factors found in the first step were applied to new product design to prove that our process was correct. The Moldflow was used for injection molding simulation, and Minitab software for the statistical analysis, respectively. Finally, the productivity of new design was increased about 33 percents for our specific case.

A Study on The Reduction of Cycle Time in Injection Molding Process of The Monitor Backcover (Monitor backcover의 사출시간 단축에 관한 연구)

  • Kim J. K.;Kim J. S.;Yoon K. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.269-272
    • /
    • 2004
  • The present study used a diagrammatic analysis of 6 sigma quality control and Taguchi method for injection molding process of monitor back-cover, evaluated the influence on the cycle time with part design, mold design, molding process and standardization activity involving design & molding, adopted analysis of sensitivity and effective factors of the part design and molding process conditions for productivity, identified main design molding factors, as critical ones influencing on the quality and productivity, of which is summarized as design guidance. The main contribution factors for cycle time can be sequentially enumerated as follows; hot spot, part thickness, coolant inlet temperature, melt temperature cooling line layout, etc.. As a first step critical factors of the design process of current monitor housing were investigated. And the optimal and better critical factors found in the first step were applied to a new product proving our process was correct. Moldflow software was used for injection molding simulation, and Minitab software for the statistical analysis. Finally, the productivity was increased by about 33 percents for our specific case.

  • PDF

A Searching Method of Optima] Injection Molding Condition using Neural Network and Genetic Algorithm (신경망 및 유전 알고리즘을 이용한 최적 사출 성형조건 탐색기법)

  • Baek Jae-Yong;Kim Bo-Hyun;Lee Gyu-Bong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.946-949
    • /
    • 2005
  • It is very a time-consuming and error-prone process to obtain the optimal injection condition, which can produce good injection molding products in some operational variation of facilities, from a seed injection condition. This study proposes a new approach to search the optimal injection molding condition using a neural network and a genetic algorithm. To estimate the defect type of unknown injection conditions, this study forces the neural network into learning iteratively from the injection molding conditions collected. Major two parameters of the injection molding condition - injection pressure and velocity are encoded in a binary value to apply to the genetic algorithm. The optimal injection condition is obtained through the selection, cross-over, and mutation process of the genetic algorithm. Finally, this study compares the optimal injection condition searched using the proposed approach. with the other ones obtained by heuristic algorithms and design of experiment technique. The comparison result shows the usability of the approach proposed.

  • PDF

Optimization of Multiple Quality Characteristics for Polyether Ether Ketone Injection Molding Process

  • Kuo Chung-Feng Jeffrey;Su Te-Li
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.404-413
    • /
    • 2006
  • This study examines multiple quality optimization of the injection molding for Polyether Ether Ketone (PEEK). It also looks into the dimensional deviation and strength of screws that are reduced and improved for the molding quality, respectively. This study applies the Taguchi method to cut down on the number of experiments and combines grey relational analysis to determine the optimal processing parameters for multiple quality characteristics. The quality characteristics of this experiment are the screws' outer diameter, tensile strength and twisting strength. First, one should determine the processing parameters that may affect the injection molding with the $L_{18}(2^1{\times}3^7)$ orthogonal, including mold temperature, pre-plasticity amount, injection pressure, injection speed, screw speed, packing pressure, packing time and cooling time. Then, the grey relational analysis, whose response table and response graph indicate the optimum processing parameters for multiple quality characteristics, is applied to resolve this drawback. The Taguchi method only takes a single quality characteristic into consideration. Finally, a processing parameter prediction system is established by using the back-propagation neural network. The percentage errors all fall within 2%, between the predicted values and the target values. This reveals that the prediction system established in this study produces excellent results.

Analysis for the Behavior of Thermal Stratification in Safety Injection Piping of Nuclear Power Plant (원전 안전주입배관에서의 열성층 유동해석)

  • Park, M.H.;Kim, K.K.;Youm, H.K.;Kim, T.Y.;Lee, S.K.;Kim, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.110-114
    • /
    • 2001
  • A numerical analysis has been perfonned to estimate the effect of turbulent penetration and thermal stratified flow in the branch lines piping. This phenomenon of thermal stratification are usually observed in the piping lines of the safety related systems and may be identified as the source of fatigue in the piping system due to the thermal stress loading which are associated with plant operating modes. The turbulent penetration length reaches to $1^{st}$ valve in safety injection piping from reactor coolant system (RCS) at normal operation for nuclear power plant when a coolant does not leak out through valve. At the time, therefore, the thermal stratification does not appear in the piping between RCS piping and $1^{st}$ valve of safety injection piping. When a coolant leak out through the $1^{st}$ valve by any damage, however, the thermal stratification can occur in the safety injection piping. At that time, the maximum temperature difference of fluid between top and bottom in the piping is estimated about $50^{\circ}C$.

  • PDF

A Study on the Warpage in Injection Molded Part for Various Rib Design and Reinforced Resins (보강 수지의 종류와 사출성형품의 리브 설계에 따른 휨의 연구)

  • Lee, Min;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.67-72
    • /
    • 2012
  • Most of the plastics products have been manufactured by injection molding. Molding trouble in injection-molded parts is caused by changing a molding product and molding process condition, etc. In this study, warpage in the injection molded part have been studied. Specimens are rectangular flat shape with and without ribs. Non-crystalline resins (ABS+GF30%, PC+GF30%) and crystalline resins (PP+GF30%, PA66+GF30%) were used for material. Flat shape ribs showed higher warpage than flat shape without rib by 10 to 41%. the specimens with ribs that are located parallel to flow direction has higher warpage than the specimens with rib that are located perpendicular to flow direction by 11 to 50%. crystalline resins have higher warpage than non-crystalline resins by 22 to 78%. Warpage decreases as packing time increases as injection temperature increases.

  • PDF

Trouble Shooting of Short Shot in Injection Molding By Using Fuzzy Logic Algorithm (퍼지 논리 알고리즘에 의한 사출제품의 미성형 해결)

  • Kang, Seong-Nam;Huh, Yong-Jeong;Cho, Hyun-Chan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.65-68
    • /
    • 2001
  • Short shot is a molded part that is incomplete since insufficient material was injected into the mold. Remedial actions to solve short shot can be done by injection molding experts based on their empirical knowledge. Modifying mold and part, changing resin to less viscous one, and adjusting process conditions are general remedies. Experts of injection molding might try to adjust process conditions such as mold temperature, melt temperature, injection time based on their empirical knowledge as the first remedy because adjustment of process conditions is the most economic way in time and cost. However it is difficult to find appropriate process conditions as they are highly coupled and there are so many elements to be considered. In this paper, a fuzzy logic algorithm has been proposed to find an appropriate mold temperature. With the percentage of the insufficient Quantity of an injection molded part, an appropriate mold temperature can be obtained by the fuzzy logic algorithm.

  • PDF