• Title/Summary/Keyword: Injection strategy

Search Result 213, Processing Time 0.022 seconds

A novel method to depurate β-lactam antibiotic residues by administration of a broad-spectrum β-lactamase enzyme in fish tissues

  • Choe, Young-Sik;Lee, Ji-Hoon;Jo, Soo-Geun;Park, Kwan Ha
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.10
    • /
    • pp.45.1-45.5
    • /
    • 2016
  • As a novel strategy to remove ${\beta}$-lactam antibiotic residues from fish tissues, utilization of ${\beta}$-lactamase, enzyme that normally degrades ${\beta}$-lactam structure-containing drugs, was explored. The enzyme (TEM-52) selectively degraded ${\beta}$-lactam antibiotics but was completely inactive against tetracycline-, quinolone-, macrolide-, or aminoglycoside-structured antibacterials. After simultaneous administration of the enzyme with cefazolin (a ${\beta}$-lactam antibiotic) to the carp, significantly lowered tissue cefazolin levels were observed. It was confirmed that the enzyme successfully reached the general circulation after intraperitoneal administration, as the carp serum obtained after enzyme injection could also degrade cefazolin ex vivo. These results suggest that antibiotics-degrading enzymes can be good candidates for antibiotic residue depuration.

Numerical Study on Strategy of Applying Low Pressure Loop EGR for a Heavy Duty Diesel Engine to Meet EURO-4 Regulation (저압라인 EGR을 적용한 대형 디젤엔진의 EURO-4 규제 대응 전략에 관한 수치적 연구)

  • Ha Changhyun;Lee Seungjae;Lee Kyoseung;Chun Kwangmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.115-122
    • /
    • 2006
  • EGR system has been widely used to reduce NOx emission in light duty diesel engines, but its application to heavy duty diesel engine is not common yet. In this study, simulation model for EURO-3 engine was developed using commercial code WAVE and then verified by comparison with experimental results in performance and emission. Possibility to meet EURO-4 regulation using modified EURO-3 engine with LPL EGR system was studied. Each components of the engine was modeled using CATIA and WaveMesher. The engine test mode was ESC 13 and injection timing and quantity were changed to compensate engine performances, because applying EGR causes power reduction. As a results of the simulation, it was found that EURO-4 NOx regulation could be achieved by applying LPL EGR system to current EURO-3 engine even with some BSFC deterioration.

A Design of Automated Contingency Management and Case Study for Monopropellant Propulsion System (단일추진시스템의 ACM 설계 및 사례연구)

  • Lee, Young-Jin;Lee, Kwon-Soon;Vachtsevanos, George
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.2
    • /
    • pp.1-11
    • /
    • 2008
  • Increasing demand for improved reliability and survivability of mission-critical systems is driving the development of health monitoring and Automated Contingency Management (ACM) systems. An ACM system is expected to adapt autonomously to fault conditions with the goal of still achieving mission objectives by allowing some degradation in system performance within permissible limits. ACM performance depends on supporting technologies like sensors and anomaly detection, diagnostic/prognostic and reasoning algorithms. This paper presents the development of a generic prototype test bench software framework for developing and validating ACM systems for advanced propulsion systems called the Propulsion ACM (PACM) Test Bench. The architecture has been implemented for a Monopropellant Propulsion System (MPS) to demonstrate the validity of the approach. A Simulink model of the MPS has been developed along with a fault injection module. It has been shown that the ACM system is capable of mitigating the failures by searching for an optimal strategy. Furthermore, the concepts of Validation and Verification (V&V) of such systems are introduced with relevant examples.

  • PDF

Enhanced Liver Targeting by Synthesis of $N_{\b{1}}-Stearyl-5-Fu$ and Incorporation into Solid lipid Nanoparticles

  • Yu, Bo-Tao;Xun-Sun;Zhang, Zhi-Rong
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1096-1101
    • /
    • 2003
  • To enhance the liver targeting and reduce the side effects of 5-fluorouracil (5-Fu), it was acylated by stearyl chloride to obtain .$\b{N}_{\b{1}}$stearyl-5-Fu (5-FuS). The chemical structure of the prodrug was confirmed by Nuclear Magnetic Resonance and Infrared Spectrometry. 5-FuS was incorporated into solid lipid nanoparticles (SLN), which were prepared by the physical agglomeration method. The mean diameter of 5-FuS-SLN was 240.19 nm and the drug loading was 20.53%. The release characteristics in vitro of 5-FuS-SLN were fitted to the first-order pharmacokinetic model. Compared with 5-Fu injection, a study on the distribution of 5-FuS-SLN in mice showed that 5-FuS-SLN could double 5-Fu concentration in mice livers. The main pharmacokinetic parameters of 5-FuS-SLN in rabbits is shown as follows: $V_d$=0.04336L/kg, $T_{1/2} \beta$=1.2834h, CL=0.1632 L/h. In conclusion, 5-FuS-SLN has significant liver targeting properties. The employment of a prodrug to enhance drug liposoluble properties and the preparation method presented in this paper, seem to be an alternative strategy to the traditional colloidal delivery system.

Numerical Study on the Ocean Sequestration of Liquid $CO_2$ (액체 이산화탄소 해양 고정화에 대한 수치적 연구)

  • Kim Nam-Jin;Chun Won-Gee;Kim Chong-Bo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.270-278
    • /
    • 2006
  • The idea of carbon dioxide sequestration in the ocean is proposed to be an effective mitigation strategy to counteract potential global warming due to the greenhouse effect. Therefore, in the present study, calculations of the dissolution behavior of carbon dioxide when liquid carbon dioxide is released at 1,000m and 1,500 m in depth. by fixed pipeline are peformed. The results show the liquid $CO_2$ injected in the ocean becomes $CO_2$ bubble at between 350m and 500m in depth, and the injection from a moving ship is a more effective method of dissolution than through a fixed pipeline. It so also noted that the ultimate plume generated from $CO_2$ bubbles repeats expansion and shrinking due to the peeling from a fixed pipeline.

Applying the TOC Thinking Process: A Study for Stabilization of Integrated Railway Safety Audit System (TOC Thinking Process를 활용한 철도종합안전심사 안정화방안 연구)

  • Oh, In-Tack;Jang, Seong-Yong
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.990-1003
    • /
    • 2006
  • To cope with the change of railway safety environment and to prevent the catastrophic accident, the railway safety management system was established through the legislation of railway safety rules. And to audit and evaluate the accomplishment of railway safety rules by the railway operators, the Integrated Railway Safety Audit System(IRSAS) has been conducting. This study find out the strategy to stabilize the IRSAS by applying Theory of Constraints(TOC) Thinking Process. For meeting the IRSAS's goal of effective levelling up of railway safety, the two necessary conditions, 1)the secure of substantial safety through the IRSAS and 2)the execution of efficient IRSAS, should be fulfilled. Estimated undesirable effects(UDEs) from the IRSAS were identified, and 3 of them were selected for creating the requisite conflict clouds. Entities from these conflict clouds were synthesized into a core conflict cloud that foamed the base of Current Reality Tree. The strategic direction for change extracted from the conflict cloud is the reinforcement of IRSAS preparation system including the level up of operator's self audit, the deepening of preliminary survey, the establishment of complementing system of audit check list and the build up of auditor's specialization. These injection were logically validated via a Future Reality Tree and expected to be confirmed by further progressing of IRSAS.

  • PDF

A Control Algorithm for Highly Efficient Operation of Auxiliary Power Unit in a Series Hybrid Electric Bus (직렬형 하이브리드 버스에서 보조동력장치의 고효율 작동을 위한 제어 알고리즘)

  • 함윤영;송승호;민병문;노태수;이재왕;이현동;김철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.170-175
    • /
    • 2003
  • A control algorithm is developed for highly efficient operation of auxiliary power unit (APU) that consists of a diesel engine and a directly coupled induction generator in series hybrid electric Bus (SHEB). In a series hybrid configuration the APU supplies the electric power needed for maintaining the state of charge (SOC) of the battery unit in various conditions of vehicle operation. As the rotational speed of generator does not depend on the vehicle speed, an optimized operation of engine-generator unit based on the efficiency map of each component can be achieved. The output torque of diesel engine can be controlled by the amount of fuel injection, and the power converted from mechanical to electrical energy can be adjusted by generate control unit (GCU) using the decoupling vector control of torque and flux. As for the given reference of the generating power, the multiply of speed and torque, many combinations of operating speed and torque are possible. The algorithm decides the new operating point based on the engine efficiency map and generator characteristic curve. During the transition of operating points, the speed controller saturation is avoided using variable limit and filtering of generator torque reference. A test rig and SHEB consist of a 1.5L diesel engine and a 30kw induction generator are constructed by Hyundai Motor Company.

A Study on the CAI Combustion Characteristics and Stratified Combustion to Extend the Operating Region Using Direct Injection Gasoline Engine (직접분사식 가솔린 엔진을 이용한 CAI 연소특성 및 운전영역 확대를 위한 성층 연소 특성에 관한 연구)

  • Lee, Chang-Hee;Choi, Young-Jong;Lim, Kyoung-Bin;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.25-31
    • /
    • 2006
  • Controlled Auto Ignition(CAI) combustion has great potential in achieving significant increase in engine efficiency, while simultaneously reducing exhaust emissions. The process itself involves the auto ignition and subsequent simultaneous combustion of a premixed charge. In this study, NVO(Negative Valve Overlap) system was applied to a CAI engine in order to use residual gas. The fuel was injected directly to the cylinder under the high temperature condition resulting from heating the intake port to initiate CAI combustion. This paper introduced the valve timing strategy and experimental set-up. From this study, the effect of engine speed and valve timing on CAI combustion and exhaust emissions was clarified. In addition, stratified charge method was used to extend CAI operating region.

Feasibility of Long Term Feed and Bleed Operation For Total Loss of Feedwater Event

  • Kwon, Young-Min;Song, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.257-264
    • /
    • 1996
  • The conventional Equipment Environment Qualification (EEQ) envelope is developed based on the containment responses during the design basis events. The Safety Depressurization System (SDS) design without In-containment Refueling Water Storage Tank (IRWST) adopted in the Ulchin 3&4 challenges the conventional EEQ envelope during long term Feed and Bleed (F&B) operation due to the direct discharge of high mass and energy into the containment. Therefore, it is necessary to confirm that the containment pressure and temperature history during the long term F&B operation does not violate the conventional EEQ envelope. However, this subject has never been quantitatively assessed before. To investigate the success path of long term F&B operation this paper analyzes the thermal hydraulic response of the containment and Reactor Coolant System (RCS) until the completion of depressurization and cooldown of RCS into Shutdown Cooling System (SCS) entry condition. It is found that the SCS entry condition can be reached within 6 hours without violating the EEQ curve by proper operation of SDS valves, High Pressure Safety Injection (HPSI) pumps and active Containment Heat Removal System (CHRS). The suggested strategy not only demonstrates the feasibility of long term F&B operation but also can be utilized in the preparation of Emergency Procedure Guidelines (EPGs)

  • PDF

Effects of Different Hydraulic Retention Times on Contaminant Removal Efficiency Using Aerobic Granular Sludge (HRT 변경에 따른 호기성 그래뉼 슬러지의 오염원 제거효율에 미치는 영향)

  • Kim, Hyun-Gu;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.8
    • /
    • pp.669-676
    • /
    • 2019
  • The purpose of this study was to evaluate the effects of different Hydraulic Retention Times (HRTs) on the contaminant removal efficiency using Aerobic Granular Sludge (AGS). A laboratory-scale experiment was performed using a sequencing batch reactor, and the Chemical Oxygen Demand (COD), nitrogen, orthophosphate removal efficiency, AGS/MLSS ratio, and precipitability in accordance with the HRT were evaluated. As a result, the COD removal efficiency was not significantly different with the reduction in HRT, and at a HRT of 6 h, the removal rate was slightly increased owing to the increase in organic loading rate. The nitrogen removal efficiency was improved by injection of influent division at a HRT of 6 h. As the HRT decreased, the MLSS and AGS tended to increase, and the sludge volume index finally decreased to 50 mL/g. In addition, the size of the AGS gradually increased to about 1.0 mm. Therefore, the control of HRT provides favorable conditions for the stable formation of AGS, and is expected to improve the contaminant removal efficiency with the selection of a proper operation strategy.