• Title/Summary/Keyword: Injection strategy

Search Result 213, Processing Time 0.021 seconds

Numerical Analysis of NAPL Removal from Soil and Groundwater Using Steam Injection (토양 및 지하수에서의 NAPL 제거를 위한 스팀주입 수치해석)

  • Lee, Sang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.667-674
    • /
    • 1998
  • Numerical models simulating the process of NAPL from contaminated soil or groundwater through steam injection can be a useful tool for designing and evaluating the cleanup strategy under various field conditions. One and two dimensional numerical analyses were conducted based on the governing equations describing the NAPL removal as a non-isothermal, multi-phase and multi component process. Relatively good agreements were obtained between the numerical results and the observations from one-dimensional laboratory experiment, except some discrepancy due to experimental difficulties. Simulation effectively identified the steam displacement process of xylene floating on the water table and TCE sinking on the aquifer bottom in a two-dimensional analysis. Overall, simulation models have a high potential in the design/appraisal of a system for field application of the technique as well as in the examination of complex processes such as vaporization which is hard to identify experimentally.

  • PDF

Effectiveness of intradiscal injection of radiopaque gelified ethanol (DiscoGel®) versus percutaneous laser disc decompression in patients with chronic radicular low back pain

  • Hashemi, Masoud;Dadkhah, Payman;Taheri, Mehrdad;Katibeh, Pegah;Asadi, Saman
    • The Korean Journal of Pain
    • /
    • v.33 no.1
    • /
    • pp.66-72
    • /
    • 2020
  • Background: Low back pain secondary to discopathy is a common pain disorder. Multiple minimally invasive therapeutic modalities have been proposed; however, to date no study has compared percutaneous laser disc decompression (PLDD) with intradiscal injection of radiopaque gelified ethanol (DiscoGel®). We are introducing the first study on patient-reported outcomes of DiscoGel® vs. PLDD for radiculopathy. Methods: Seventy-two patients were randomly selected from either a previous strategy of PLDD or DiscoGel®, which had been performed in our center during 2016-2017. Participants were asked about their numeric rating scale (NRS) scores, Oswestry disability index (ODI) scores, and progression to secondary treatment. Results: The mean NRS scores in the total cohort before intervention was 8.0, and was reduced to 4.3 in the DiscoGel® group and 4.2 in the PLDD group after 12 months, which was statistically significant. The mean ODI score before intervention was 81.25% which was reduced to 41.14% in the DiscoGel® group and 52.86% in the PLDD group after 12 months, which was statistically significant. Between-group comparison of NRS scores after two follow-ups were not statistically different (P = 0.62) but the ODI score in DiscoGel® was statistically lower (P = 0.001). Six cases (16.67%) from each group reported undergoing surgery after the follow-up period which was not statistically different. Conclusions: Both techniques were equivalent in pain reduction but DiscoGel® had a greater effect on decreasing disability after 12 months, although the rate of progression to secondary treatments and/or surgery was almost equal in the two groups.

Anti-nociceptive effects of dual neuropeptide antagonist therapy in mouse model of neuropathic and inflammatory pain

  • Kim, Min Su;Kim, Bo Yeon;Saghetlians, Allen;Zhang, Xiang;Okida, Takuya;Kim, So Yeon
    • The Korean Journal of Pain
    • /
    • v.35 no.2
    • /
    • pp.173-182
    • /
    • 2022
  • Background: Neurokinin-1 (NK1) and calcitonin gene-related peptide (CGRP) play a vital role in pain pathogenesis, and these proteins' antagonists have attracted attention as promising pharmaceutical candidates. The authors investigated the anti-nociceptive effect of co-administration of the CGRP antagonist and an NK1 antagonist on pain models compared to conventional single regimens. Methods: C57Bl/6J mice underwent sciatic nerve ligation for the neuropathic pain model and were injected with 4% formalin into the hind paw for the inflammatory pain model. Each model was divided into four groups: vehicle, NK1 antagonist, CGRP antagonist, and combination treatment groups. The NK1 antagonist aprepitant (BIBN4096, 1 mg/kg) or the CGRP antagonist olcegepant (MK-0869, 10 mg/kg) was injected intraperitoneally. Mechanical allodynia, thermal hypersensitivity, and anxiety-related behaviors were assessed using the von Frey, hot plate, and elevated plus-maze tests. The flinching and licking responses were also evaluated after formalin injection. Results: Co-administration of aprepitant and olcegepant more significantly alleviated pain behaviors than administration of single agents or vehicle, increasing the mechanical threshold and improving the response latency. Anxiety-related behaviors were also markedly improved after dual treatment compared with either naive mice or the neuropathic pain model in the dual treatment group. Flinching frequency and licking response after formalin injection decreased significantly in the dual treatment group. Isobolographic analysis showed a meaningful additive effect between the two compounds. Conclusions: A combination pharmacological therapy comprised of multiple neuropeptide antagonists could be a more effective therapeutic strategy for alleviating neuropathic or inflammatory pain.

Enhancing Carbon Dioxide Storage Efficiency in Aquifers through Surfactant Application (계면활성제 활용에 따른 공극 규모 이산화탄소 저장 효율 향상)

  • Gang, Seokgu;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.63-70
    • /
    • 2023
  • Underground carbon dioxide (CO2) storage emerges as a pivotal strategy for mitigating atmospheric CO2 emissions and addressing global warming concerns. This study investigates techniques to optimize storage efficiency in aquifers, which stand out for their superior capacity compared to other geological layers. The focus is on the application of nonionic and anionic surfactants to enhance CO2 storage efficiency within confined spaces. A specialized micromodel facilitating fluid flow observation was employed for the evaluation. Experimental results revealed a noteworthy minimum 40% increase in storage efficiency at the lowest injection rate when utilizing nonionic and anionic surfactants, in comparison to pure water injection. Interestingly, no significant variations in storage efficiency were observed based on the ionicity and concentration of the surfactants under investigation. These findings have implications for guiding the selection and concentration determination of surfactants in future underground CO2 storage endeavors.

Beneficial effects of intraovarian injection of platelet-rich plasma in women with poor ovarian response

  • Aida Najafian;Ashraf Alyasin;Marziyeh Aghahosseini;Sedigheh Hosseinimousa;Seyyedeh Neda Kazemi
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.4
    • /
    • pp.285-291
    • /
    • 2023
  • Objective: Infertility can result from a diminished ovarian reserve, but a potential remedy exists in the form of platelet-rich plasma (PRP) administration. This treatment involves both biological factors and tissue trauma mechanisms, which stimulate folliculogenesis, making it a promising and effective strategy. We assessed the impact of direct PRP injections into the ovaries on the fertility outcomes of women classified as poor responders. Methods: A quasi-experimental study was conducted from April 2021 to December 2022, focusing on patients classified as POSEIDON grade 3 or 4. PRP injections were administered into both ovaries. After 3 months, data were collected on anti-Mullerian hormone (AMH) level, follicle-stimulating hormone (FSH) level, and the numbers of oocytes, mature oocytes, and good-quality embryos following ovarian stimulation. We then compared the data from before and after PRP injection. Results: This study included 50 women, with a mean of 39 years (interquartile range [IQR], 35 to 43) and 4 years (IQR, 2 to 6) for age and infertility duration, respectively. FSH levels decreased after treatment, while AMH levels and the numbers of oocytes, metaphase II oocytes, and high-quality embryos increased. However, only the increase in high-quality embryos was significant. The pregnancy and spontaneous pregnancy rates were 20% and 14%, respectively. Notably, women with secondary infertility exhibited a significantly higher pregnancy rate than those with primary infertility. Conclusion: Ample evidence suggests that PRP can enhance ovarian function. However, further studies are needed to identify the appropriate candidates for this procedure, establish the optimal PRP preparation method, and standardize the procedure for its adjuvant use in assisted reproductive technology cycles.

Study on Shortening Light-Off Time of Three Way Catalyst and Reduction of Harmful Emissions with Exhaust Synthetic Gas Injection(ESGI) Technology during Cold Start of SI Engines (가솔린 기관의 냉간시동 조건에서 합성가스 배기분사 기술에 의한 촉매의 활성화 온도 도달시간 단축 및 유해배출물 저감에 관한 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Won, Sang-Yeon;Song, Chun-Sub;Park, Young-Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.94-101
    • /
    • 2008
  • Since regulations of exhaust emissions are continuously reinforced, studies to reduce harmful emissions during the cold start period of SI engines have been carried out very extensively worldwide. During the cold start period, raising the temperature of cold exhaust gas is a key strategy to minimize the light-off time of three way catalysts. In this study, a synthetic gas containing a large amount of hydrogen was injected into the exhaust manifold to raise the exhaust gas temperature and to reduce harmful emissions. The authors tried to evaluate changes in exhaust gas temperature and harmful emissions through controlling the engine operating parameters such as ignition timings and lambda values. Also the authors investigated both combustion stability and reduction of harmful emissions. Experimental results showed that combustion of the synthetic gas in the exhaust manifold is a very effective way for solving the problems of harmful emissions and light-off time. The results also showed that the strategy of retarded ignition timings and increased air/fuel ratios with ESGI is effective in raising exhaust gas temperature and reducing harmful emissions. Futhermore, the results showed that engine operating parameters ought to be controlled to lambda = 1.2 and ignition timing = $0{\sim}3^{\circ}$ conditions to reduce harmful emissions effectively under stable combustion conditions.

Surgical Management Options for Trigeminal Neuralgia

  • Lunsford, L. Dade;Niranjan, Ajay;Kondziolka, Douglas
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.6
    • /
    • pp.359-366
    • /
    • 2007
  • Trigeminal neuralgia is a condition associated with severe episodic lancinating facial pain subject to remissions and relapses. Trigeminal neuralgia is often associated with blood vessel cross compression of the root entry zone or more rarely with demyelinating diseases and occasionally with direct compression by neoplasms of the posterior fossa. If initial medical management fails to control pain or is associated with unacceptable side effects, a variety of surgical procedures offer the hope for long-lasting pain relief or even cure. For patients who are healthy without significant medical co-morbidities, direct microsurgical vascular decompression [MVD] offers treatment that is often definitive. Other surgical options are effective for elderly patients not suitable for MVD. Percutaneous retrogasserian glycerol rhizotomy is a minimally invasive technique that is based on anatomic definition of the trigeminal cistern followed by injection of anhydrous glycerol to produce a weak neurolytic effect on the post-ganglionic fibers. Other percutaneous management strategies include radiofrequency rhizotomy and balloon compression. More recently, stereotactic radiosurgery has been used as a truly minimally invasive strategy. It also is anatomically based using high resolution MRI to define the retrogasserian target. Radiosurgery provides effective symptomatic relief in the vast majority of patients, especially those who have never had prior surgical procedures. For younger patients, we recommend microvascular decompression. For patients with severe exacerbations of their pain and who need rapid response to treatment, we suggest glycerol rhizotomy. For other patients, gamma knife radiosurgery represents an effective management strategy with excellent preservation of existing facial sensation.

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

Therapeutic Strategy for the Prevention of Pseudorabies Virus Infection in C57BL/6 Mice by 3D8 scFv with Intrinsic Nuclease Activity

  • Lee, Gunsup;Cho, SeungChan;Hoang, Phuong Mai;Kim, Dongjun;Lee, Yongjun;Kil, Eui-Joon;Byun, Sung-June;Lee, Taek-Kyun;Kim, Dae-Hyun;Kim, Sunghan;Lee, Sukchan
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.773-780
    • /
    • 2015
  • 3D8 single chain variable fragment (scFv) is a recombinant monoclonal antibody with nuclease activity that was originally isolated from autoimmune-prone MRL mice. In a previous study, we analyzed the nuclease activity of 3D8 scFv and determined that a HeLa cell line expressing 3D8 scFv conferred resistance to herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV). In this study, we demonstrate that 3D8 scFv could be delivered to target tissues and cells where it exerted a therapeutic effect against PRV. PRV was inoculated via intramuscular injection, and 3D8 scFv was injected intraperitoneally. The observed therapeutic effect of 3D8 scFv against PRV was also supported by results from quantitative reverse transcription polymerase chain reaction, southern hybridization, and immunohistochemical assays. Intraperitoneal injection of 5 and $10{\mu}g$ 3D8 scFv resulted in no detectable toxicity. The survival rate in C57BL/6 mice was 9% after intramuscular injection of 10 $LD_{50}$ PRV. In contrast, the 3D8 scFv-injected C57BL/6 mice showed survival rates of 57% ($5{\mu}g$) and 47% ($10{\mu}g$). The results indicate that 3D8 scFv could be utilized as an effective antiviral agent in several animal models.

INVESTIGATION OF RUNNING BEHAVIORS OF AN LPG SI ENGINE WITH OXYGEN-ENRICHED AIR DURING START/WARM-UP AND HOT IDLING

  • Xiao, G.;Qiao, X.;Li, G.;Huang, Z.;Li, L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.437-444
    • /
    • 2007
  • This paper experimentally investigates the effects of oxygen-enriched air (OEA) on the running behaviors of an LPG SI engine during both start/warm-up (SW) and hot idling (HI) stages. The experiments were performed on an air-cooled, single-cylinder, 4-stroke, LPG SI engine with an electronic fuel injection system and an electrically-heated oxygen sensor. OEA containing 23% and 25% oxygen (by volume) was supplied for the experiments. The throttle position was fixed at that of idle condition. A fueling strategy was used as following: the fuel injection pulse width (FIPW) in the first cycle of injection was set 5.05 ms, and 2.6 ms in the subsequent cycles till the achieving of closed-loop control. In closed-loop mode, the FIPW was adjusted by the ECU in terms of the oxygen sensor feedback. Instantaneous engine speed, cylinder pressure, engine-out time-resolved HC, CO and NOx emissions and excess air coefficient (EAC) were measured and compared to the intake air baseline (ambient air, 21% oxygen). The results show that during SW stage, with the increase in the oxygen concentration in the intake air, the EAC of the mixture is much closer to the stoichiometric one and more oxygen is made available for oxidation, which results in evidently-improved combustion. The ignition in the first firing cycle starts earlier and peak pressure and maximum heat release rate both notably increase. The maximum engine speed is elevated and HC and CO emissions are reduced considerably. The percent reductions in HC emissions are about 48% and 68% in CO emissions about 52% and 78%; with 23% and 25% OEA, respectively, compared to ambient air. During HI stage, with OEA, the fuel amount per cycle increases due to closed-loop control, the engine speed rises, and speed stability is improved. The HC emissions notably decrease: about 60% and 80% with 23% and 25% OEA, respectively, compared to ambient air. The CO emissions remain at the same low level as with ambient air. During both SW and HI stages, intake air oxygen enrichment causes the delay of spark timing and the increased NOx emissions.