• Title/Summary/Keyword: Injection stage

Search Result 663, Processing Time 0.027 seconds

An Experimental Study on the Reduction of a Birefringence Distribution in LGP by Injection-Press Molding (형체압축성형을 이용한 도광판의 복굴절 저감효과에 관한 실험적 연구)

  • Min I. K.;Kim J. S.;Ko Y. B.;Park H. P.;Yoon K. H.;Hwang C. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.17-22
    • /
    • 2005
  • The residual birefringence in molded plastic parts can be divided into two kinds of residual birefringence, i.e., the flow induced residual birefringence produced in flowing stages and the thermally induced residual birefringence produced in cooling stage. In this paper, the effect of new injection-press molding process with normal injection mold, i.e. I) injection-compression mode, ii) injection-press mode, on the distribution of birefringence was studied. It was found that the values of the birefringence was reduced at i) low clamping force and ii) longer mold opening length by injection-press molding.

  • PDF

Two-Stage Design Optimization of an Automotive Fog Blank Cover for Enhancing Its Injection Molding Quality (자동차용 안개등 커버의 사출성형 품질 향상을 위한 2 단계 설계 최적화)

  • Park, Chang-Hyun;Ahn, Hee-Jae;Choi, Dong-Hoon;Pyo, Byung-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1097-1103
    • /
    • 2010
  • Injection pressure, an important factor in the filling procedure, should be minimized to enhance injection molding quality. In addition, warping deformation and weld lines, which are representative failures, should be avoided to enhance injection molding quality. To improve injection molding quality, the design procedure for an automotive fog blank cover is divided into two stages. In the first stage, we optimally obtain injection molding process variables that minimize injection pressure and warping deformation by using design of experiments, approximation and optimization techniques equipped in PIAnO (Process Integration, Automation and Optimization), a commercial PIDO (Process Integration and Design Optimization) tool. Then, we determine the thickness of the automotive fog blank cover that enables us to avoid generating weld lines. The design results we obtain in this study are found far better than those of the initial design, which demonstrates the effectiveness of our design method.

A Knowledge-Based CAD System for the Synthesis of Supplementary Features in Injection Molded Parts (사출성형제품의 부형상 설계를 위한 지식형 CAD 시스템에 관한 연구)

  • 허용정;김상국
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1933-1947
    • /
    • 1991
  • The synthesis of supplementary features of injection molded parts has been done empirically, since it requires profound knowledge about the features' moldability and causal effects on the properties of the part, which are not available to designers through current CAD systems. RIBBER is a knowledge module which contains knowledge to permit non-experts as well as mold design experts to generate acceptable supplementary features of injection molded parts. A knowledge-based CAD system is constructed by adding the knowledge module, RIBBER, for mold feature synthesis and appropriate CAE programs for mold design analysis to an existing geometric modeler in order to provide designers, at the initial design stage, with comprehensive process knowledge-based CAD system is a new tool which enables the concurrent design and CIM with integrated and balanced design decisions at the initial design stage of injection molding.

A Study on Moldability Evaluation System in Injection Molding Based on Fuzzy Neural Network (퍼지 신경망을 이용한 성형성 평가 시스템에 관한 연구)

  • 강성남;허용정;조현찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.97-100
    • /
    • 1997
  • In order to predict the moldability of a injection molded part, a simulation of filling is needed. Especially when short shot is predicted by CAE simulation in the filling stage, there are mainly three ways to solve the problem. Modification of gate and runner, replacement of plastic resin, and adjustment of process conditions are the main ways. Among them, adjustment of process conditions is the most economic way in the cost and time since the mold doesn\\`t need t be modified at all. But it is difficult to adjust the process conditions appropriately in no times since it requires an empirical knowledge of injection molding. In this paper, a fuzzy neural network(FNN) based upon injection molding process is proposed to evaluate moldability in filling stage and also to solve the problem in case of short shot. An adequate mold temperature is generated through the fuzzy neural network where fill time and melt temperature are taken into considerations because process conditions affect each other.

  • PDF

Effect of Injection Condition on the Diesel. Fuel Atomization in a Multi-Hole Nozzle (다공 노즐에서 분사조건이 디젤 연료의 미립화 특성에 미치는 영향)

  • Sub, Hyun-Kyu;Kim, Jee-Won;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • This paper present the diesel fuel spray evolution and atomization performance in a multi-hole nozzle in terms of injection rate, spray evolutions, and mean diameter and velocity of droplets in a compression ignition engine. In order to study the effect of split injection on the diesel fuel spray and atomization characteristic in a multi-hole nozzle, the test nozzle that has two-row small orifice with 0.2 mm interval was used. The time based fuel injection rate characteristics was analyzed from the pressure variation generated in a measuring tube. The spray characteristics of a multi-hole nozzle were visualized and measured by spray visualization system and phase Doppler particle analyzer (PDPA) system. It was revealed that the total injected fuel quantities of split injection are smaller than those of single injection condition. In case of injection rate characteristics, the split injection is a little lower than single injection and the peak value of second injection rate is lower than single injection. The spray velocity of split injection is also lower because of short energizing duration and small injection mass. It can not observe the improvement of droplet atomization due to the split injection, however, it enhances the droplet distributions at the early stage of fuel injection.

  • PDF

A Developement of Ultra High Pressure Injection Equipment for Study on Diesel Spray Characteristics with Ultra High Pressure (극초고압 디젤분무특성 해석을 위한 극초고압 단발분사장치의 개발)

  • 정대용;이종태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.50-59
    • /
    • 2003
  • It was known that high pressure injection is an effective method to enhance thermal efficiency and decrease exhaust emissions in diesel engines. If injection pressure becomes ultra high, it is predicted that there may be a suitable injection pressure which the enhancement rate of spray characteristics is moderate. Also, there may be a limit injection pressure which spray characteristics is reversed and get worse. But these are unknown. To investigate a suitable injection pressure and a limit injection pressure, ultra high pressure injection equipment(UHPIE), which can realize the injection pressure of 3,200bar, was developed. UHPIE is a basic apparatus of single shot injection, and ultra high pressure was achieved by second stage rapid compression in short time. From the evaluation of UHPIE, a injection curve like a conventional diesel engine(jerk type) was realized. Also, it was proved that repetition of experiment was excellent. Therefore it was found that there was no problem to perform the study on the ultra high pressure injection with UHPIE. Consequently, the foundation of the study on ultra high pressure injection could be established.

Characteristic of the Spray Behavior in accordance with Revolution Speed of Fuel Injection Cam for DI Diesel Engines (직분식 디젤기관의 연료캠 회전속도에 의한 분무 거동 특성)

  • Kim, Y.S.;Ra, J.H.;Lim, B.H.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.17-24
    • /
    • 2001
  • In order to investigate a characteristic of the behavior of spray pattern in accordance with running conditions for a DI diesel engine, the PLN Injection system with changeable revolution speed of fuel injection cam was set up, and through this, history curves of injection pressure for a similar real DI diesel engine were able to be displayed. Authors visualized and analyzed the sprays at various revolution speed of fuel injection cam, and found out that fuel distributions of the sprays in the low speed condition were bad, fuel with air was injected from the hole of nozzle at the beginning of injection, and wide spray angle at the early stage of injection became narrower with elapsed time, but wider again at the end of injection.

  • PDF

COMMON RAIL INJECTOR MODIFIED TO ACHIEVE A MODULATION OF THE INJECTION RATE

  • FICARELLA A.;GIUFFRIDA A.;LANZAFAME R.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.305-314
    • /
    • 2005
  • Injection rate shape control is one feature of a diesel fuel injection system that is strongly desired at this time. In the conventional common rail system, it is difficult to control the injection rate since the fuel pressure is constant during the injection period, resulting in a nearly rectangular rate shape. In order to look into possible injection modulations, injectors equipped with standard and geometrically modified control valves were investigated in detail by means of computer modelling and simulation. Experiments were carried out to validate the feasibility of such a shaping. The results of this study show a noteworthy dependence of the fuel rate on geometrical modifications in the piloting stage of the injector.

Effect of nozzle geometry on the injection characteristics and spray behavior (고압 분사 디잴 인잭터의 노즐 형상이 분사 특성 및 분무 거동에 미치는 영향)

  • Lee, C.S.;Park, S.W.;Chon, M.S.
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This paper describes the characteristics of injection rate and macroscopic behavior of fuel spray injected from common-rail type diesel injectors with different nozzle geometries. The injection rates according to the nozzle geometries were measured at different energizing duration of the injector solenoid and injection pressure by using the Bosch's injection rate meter based on the pressure variation in the tube. The spray behaviors injected from the different nozzles were visualized using the spray visualization system composed of an Ar-ion laser, an ICCD camera, and a synchronization system at various injection and ambient pressures. It is revealed that VCO nozzle has higher spray tip velocity at the early stage of injection duration and wider spray cone angle than the mini-sac nozzles. Also the spray cone angle is increased with the increase of nozzle diameter.

  • PDF

A Study on The Change of Birefringence Structure in Injection and Injection/compression Molded Products (사출 및 사출/압축 성형품 내에서의 복굴절 구조 변화에 관한 연구)

  • Min, I.K.;Lee, K.B.;Yoon, K.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.296-304
    • /
    • 2010
  • It is still needed to study the effect of process conditions on the final properties of injection-molded parts for producing precision optical products. Especially, the optical anisotropy, i.e., birefringence, is a significant factor to affect the function of many optical components. In the present study we have focused on the effect of holding and compression processes on the birefringence remaining in the transparent disc by examining the gap-wise distribution of birefringence and extinction angle. As a result, two extra birefringence and extinction peaks near the center in thickness direction showed the effect of holding pressure, which came from the flow in packing stage. However, more uniform birefringence distribution than injection-only cases could be found in injection/compression cases. Depends on the process condition even the flow reversal could be found from the distribution of extinction angle. Finally, graphical representation of optical indicatrix was added for better understanding the final structure of injection-only and injection/compression cases.