• 제목/요약/키워드: Injection quantity

검색결과 270건 처리시간 0.034초

디젤-가솔린 혼합연료의 혼합안정성 및 거시적인 분무 특성에 관한 실험적 연구 (Experimental Study on Mixing Stability and Macroscopic Spray Characteristics of Diesel-gasoline Blended Fuels)

  • 박세원;박수한;박성욱;전문수;이창식
    • 한국분무공학회지
    • /
    • 제17권3호
    • /
    • pp.121-127
    • /
    • 2012
  • The study is to investigate the mixing stability, fuel properties, and macroscopic spray characteristics of diesel-gasoline blended fuels in a common-rail injection system of a diesel engine. The test fuels were mixed diesel with gasoline fuel, which were based volume fraction of gasoline from 0 to 100% in 20% intervals. In order to analyze the blended effect of gasoline to diesel fuel, the properties of test fuels such as density, viscosity, and surface tension were measured. In addition, the spray behavior characteristics were studied by investigating the spray tip penetration and spray angle using a spray images through a spray visualization system. It was revealed that the density, kinematic viscosity and surface tension of diesel-gasoline blending fuels were decreased with the increase of gasoline fuel. The injection quantity of test fuels were almost similar level at short energizing duration condition. On the other hand, the increase of energizing duration shows the decrease of injection quantity compared to short energizing duration. The test blending fuels have similar growth in Spray tip penetration and Spray cone angle.

정적연소기에서 분위기 압력에 따른 Diesel-DME 혼합연료의 분무 특성에 관한 연구 (An Investigation on the Spray Characteristics of Diesel-DME Blended Fuel with Variation of Ambient Pressure in the Constant Volume Combustion Chamber)

  • 양지웅;이세준;임옥택
    • 한국분무공학회지
    • /
    • 제17권4호
    • /
    • pp.178-184
    • /
    • 2012
  • The aim of this study was to compare the spray characteristics of a typical fuel (100% diesel, DME) and diesel-DME blended fuel in a constant volume combustion chamber (CVCC). The typical fuel (100% diesel, DME) and diesel-DME blended fuel spray characteristics were investigated at various ambient pressures (pressurized nitrogen) and fuel injection pressures using a common rail fuel injection system when the fuel mixture ratio was varied. The fuel injection quantity and spray characteristics were measured including spray shape, penetration length, and spray angle. Common types of injectors were used.

Common Rail을 이용한 대형 디젤 가시화엔진에서의 연소특성 (Combustion Characteristics of Common Rail System by Using a Heavy Duty Transparent Engine)

  • 김영민;이장희;김상호;이웅건;홍창호;최병철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.896-902
    • /
    • 2001
  • To meet strict emission regulation while improving engine performances, common rail injection system which is suitable for electronic control, and capable of controlling injection quantity, timing, rate and pressure individually as well as realizing high pressure has been developed. At present study, a 8L DI diesel engine was converted to a single-cylinder experimental engine allowing optical access through an extended piston and a prototype of common rail injector in progress was applied to the engine. The combustion characteristics of the engine were analysed by using direct images and characteristics of the injector were analysed. We can not say that the results are always the same to general common rail injection system but that they are just characteristics of specific prototype injector.

  • PDF

커먼레일용 연료분사 인젝터의 설계변수에 대한 민감도 분석 (Sensitivity Analysis on Design Parameters of the Fuel Injector for CRDI Engines)

  • 장주섭;윤영환
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.107-114
    • /
    • 2009
  • A Common-Rail Direct Injection (CRDI) system for high speed diesel engines was developed to meet reductions of noise and vibration, emission regulations. High pressure in the common rail with electric control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine velocity and load conditions. In this study, CRDI system analysis model which includes fuel and mechanical systems was developed using commercial software, AMESim in order to predict characteristics for various fuel injection components. The parameter sensitivity analysis such as throttle size, injection rate, plunger displacement, supply pressure of fuel injection for system design are carried out.

커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교(II) - 솔레노이드 및 피에조 구동방식 비교분석 - (Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (II))

  • 이진욱
    • 한국분무공학회지
    • /
    • 제15권2호
    • /
    • pp.67-73
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for injector driving.

흡기 포트 내 물 분사에 의한 디젤 기관의 배기 유해물 배출 및 기관 성능 변화에 관한 실험적연구 (An Experimental Study on the characteristic of Exhaust Emissions and the Engine Performacne with Intake Port Water Injection in Diesel Engine)

  • 김기형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.25-32
    • /
    • 1999
  • This study was carried out to reduce NOx emissions from diesel engine and to investigate the variation of engine performance using the water injection. In this study the water was extracted from the exhaust gas and injected directly into the intake port with the inlet charge. The water condensing system operated as a closed system without any supplementary water supply. The experimental parameters such as the revolution the torque and the water injection rate are varied and the result from this experiment found the significant NOx reduction whereas the smoke emission increases as water/air ratio increases as the cases like the EGR. In spite of increasing the quantity of the water injection the engine output was slightly decreased and the specific fuel consumption was increased as was anticipated. Especially the system was founded to be effective on the reduction of the NOx emissions at the high load region relatively.

  • PDF

커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교 (I) - 실제 직접분사식 디젤엔진에서의 사전분사 특성 분석 - (Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (I))

  • 이진욱
    • 한국분무공학회지
    • /
    • 제15권1호
    • /
    • pp.25-30
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for driving the injector.

퍼지-신경망을 이용한 미성형 사출제품의 최적해결에 관한 연구 (A Study on Optimal Solution of Short Shot Using Fuzzy Logic Based Neural Network(FNN))

  • Kang, Seong-Nam;Huh, Yong-Jeong;Cho, Hyun-Chan
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.83-86
    • /
    • 2001
  • In injection molding, short shot is one of the frequent and fatal defects. Experts of injection molding usually adjust process conditions such as injection time, mold temperature, and melt temperature because it is the most economic way in time and cost. However it is a difficult task to find appropriate process conditions for troubleshooting of short shot as injection molding process is a highly nonlinear system and process conditions are coupled. In this paper, a fuzzy neural network(FNN) has been applied to injection molding process to shorten troubleshooting time of short shot. Based on melt temperature and fill time, a reasonable initial mold temperature is recommended by the FNN, and then the mold temperature is inputted to injection molding process. Depending on injection molding result, specifically the insufficient quantity of an injection molded part, an appropriate mold temperature is recommend repeatedly through the FNN.

  • PDF

분말사출성형을 이용한 다수 캐비티 치과용 요오드 용기 금형제작에 관한 연구 (A Study on mold manufacture of multi-cavity dental iodine container using powder injection molding)

  • 최재훈
    • 한국산학기술학회논문지
    • /
    • 제15권1호
    • /
    • pp.21-26
    • /
    • 2014
  • 치과에서 사용되는 구강 치료용 요오드 용기는 개폐 시 용기의 캡에 부착되어 있는 칼날에 의해 치료용 실은 절단이 된다. 금속의 칼날은 요오드 용액과 반응하여 단기간에 부식이 되는 문제로 인해 환자의 위생에도 영향을 준다. 이러한 문제를 해결하기 위해 최근 세라믹 칼날로 대체되어진 제품들도 개발되어 생산되는데, 이때 세라믹 칼날은 수작업과 기계가공을 통해 만들어 진다. 본 연구에서는 세라믹 칼날을 분말사출성형공정으로 대량 생산할 수 있도록 20Cavity의 균일 충전을 위한 유동 시스템을 제안하였다. Moldflow를 이용하여 20cavity 유동성에 대한 시뮬레이션을 진행하였고, 금형제작과 수정을 통해 금형을 완성하였다. 사출성형 후 탈지와 소결공정을 통해 완성하고, 금형에 세라믹 칼날을 인서트 사출하여 캡 제품을 완성하였다. 본 연구를 통해 유효한 절단 성능을 갖는 세라믹칼날 대량생산 가능성을 검증하였다.

증발 조건에서 초고압 분사와 노즐 홀 직경이 디젤 유량 및 분무 특성에 미치는 영향에 대한 연구 (Influence of Ultra-high Injection Pressure and Nozzle Hole Diameter on Diesel Flow and Spray Characteristics under Evaporating Condition)

  • 조원규;박영수;배충식;유준;김영호
    • 한국분무공학회지
    • /
    • 제20권1호
    • /
    • pp.43-52
    • /
    • 2015
  • Experimental study was conducted to investigate the effects of ultra-high injection pressure and nozzle hole diameter on diesel flow and spray characteristics. Electronically controlled ultra-high pressure fuel injection system was made to supply the fuel of ultra-high pressure consistently. Three injection pressures, 80, 160, and 250MPa were applied. Four type of injectors with identical eight nozzle holes were used. The four injectors have nozzle hole diameters of 115, 105, 95, and $85{\mu}m$ respectively. Injection quantity and rate were measured to investigate flow characteristics according to injection pressures and nozzle hole diameters. Mie-scattering and shadowgraph were performed to visualize liquid and vapor phases of diesel spray in a constant volume combustion chamber (CVCC). Ambient conditions of high pressure and high temperature in a diesel engine were simulated by using CVCC.