• Title/Summary/Keyword: Injection parameters

Search Result 995, Processing Time 0.031 seconds

A study on the injection charateristics of the fuel injection system in a diesel engine (디젤기관 연료분사 시스템의 분사 특성에 관한 연구)

  • 이창식;김정헌
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.54-60
    • /
    • 1992
  • This paper deals with the results of injection characteristics and the influence parameters upon the fuel injection performance of the inline injection system in a diesel engine. In this study, the characteristics of the injection rate, the injection pressure and the injection duration have been investigated by changing the injection parameters. The predicted results and injection performance are compared to the measured data from the injection test system.

  • PDF

A Numerical Analysis on the Spray Characteristics at Different Injection System Parameters in a Common-rail Diesel Engine (연료분사계 변수의 변화에 따른 커먼레일 디젤엔진의 분무특성에 관한 수치적 분석)

  • Lee, Suk-Young;Jeon, Chung-Hwan
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • This paper present the diesel spray characteristics at different injection system parameters in a HSDI diesel engine. The spray characteristics was calculated by the coupled simulation of fuel injection system model and three-dimensional KIVA-3V code with TAB spray model. The relevant injection parameters are accumulator volume, control chamber initial volume, control orifice diameter, needle valve diameter and nozzle chamber initial volume, etc. Parametric investigation with respect to twelve relevant injection parameters showed that there was a significant advantage in varying control chamber initial volume, control chamber orifice diameter, and nozzle chamber orifice diameter with respect to effect the SMD and fuel injection speed. Consequently, in order to design the fuel injection system for spray characteristics, it seems reasonable to suppose to be optimized the fuel injection system.

Investigation on the Non-linear Injection Characteristics of GDI injector using 1D Simulation (1D 시뮬레이션 기반 GDI 인젝터의 비선형적 분사 특성 해석에 대한 연구)

  • Jinwoo Lee;Seoksu Moon;Donghan Hur;Jinsuk Kang
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.169-175
    • /
    • 2023
  • Multi-injection scheme is being applied to GDI combustion to reduce PM and PN emission to meet the EU7 regulation. However, very short injection duration encounters the ballistic injection region, which injection quantity does not increase linearly with injection duration when applying multi-injection. In this study, numerical studies were conducted to reveal the cause of ballistic injection and the effect of design parameters on ballistic region using 1-D simulation, AMESim. Injection rate and injection quantity were compared with experiment to validate the established model, which showed the accuracy with 10% error. The model revealed that the tendency of ballistic region coincides with the needle motion behavior, which means that parameters at the upper part of needle such as electro-magnetic force, needle spring force and needle friction force have dominant effect on ballistic injection. To figure out the effect of electro-magnetic and needle friction force on ballistic, those parameters were varied to plus and minus 10% with model. The result showed that those parameters clearly changed the ballistic region characteristics, however, the impact became insignificant for outside of ballistic region, which means that the ballistic injection is mainly influenced by initial motion of injector needle.

Accuracy improvement of injection parameters for optical complex signal generation using optical injection-locked semiconductor laser (광 주입 파장 잠금 반도체 레이저를 이용한 광학 복소 신호 생성시의 주입 매개 변수 정확도 향상)

  • Cho, Jun-Hyung;Sung, Hyuk-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.478-485
    • /
    • 2021
  • An injection locking technology of a semiconductor laser is a promising technology to generate optical complex signals by adjusting optical injection parameters. The extraction of the precise injection parameters plays a key role in the generation of the optical complex signal. Rate equations of semiconductor lasers under optical injection are commonly used to map the injection parameters and the corresponding optical complex signal. The accuracy of the generated optical complex signal on the injection parameters is limited since the rate equations require a locking map-based interpolation method. We propose a novel analytic method, namely rate equation-based direct extraction method, to directly calculate the injection parameters without relying on the locking map-based interpolation method. We achieved 103-times improvement of the signal accuracy by using the proposed method compared to locking-map based interpolation method.

An Optimization of the Combustion Parameters for Reducing Exhaust Emissions in a Direct Injection Diesel Engine (직접분사식 디젤기관 배기배출물 저감을 위한 연소인자의 최적화)

  • 주봉철;노병준;김규철;이삼구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.78-85
    • /
    • 2000
  • This study is to develop the diesel engine which has 6 cylinder natural aspiration direct injection type of 7.4$\ell$ with high performance, low emissions and low fuel consumption Finally the developed engine meets Korean `98 exhaust emission regulation for the city bus of heavy duty diesel engine by optimizing the various combustion parameters affecting performance and exhaust emissions. Combustion parameters are the swirl ratio of intake ports, the profile of injection pump`s cam affecting injection pressure, the design features of piston bowl of injection pump`s cam affecting injection pressure, the design features of piston bowl of combustion chamber and injector`s hole size. Through experimental analysis, various combustion parameters are optimized and the results are as follows; the swirl ratio is 2.20, the profile of injection pump`s cam is concave and re-entrant ratio, inner diameter of piston bowl and hole diameter of injector is 0.88,$\psi$64.0mm and $\psi$0.25mm respectively.

  • PDF

DC Injection Control for Grid-Connected Single-Phase Inverters Based on Virtual Capacitor

  • Wang, Wei;Wang, Ping;Bei, Taizhou;Cai, Mengmeng
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1338-1347
    • /
    • 2015
  • DC injection is a critical issue in transformerless grid-connected inverters. DC injection control based on virtual capacitor has the advantages of low cost, low loss, high accuracy and easy implementation. In this paper, the principle of DC injection control based on virtual capacitor was analyzed. In addition, the applicable conditions, working process, steady state error and advantages were also discussed in detail. The design of the control parameters based on virtual capacitor was proposed in a grid-connected inverter with LCL filter. The robustness of the control parameters was also discussed. Simulation and experimental results verify the validity of the analysis and demonstrate that this research has a certain value in engineering applications.

The Phenomena of Injection Instability for Simplex Swirl Injector (Simplex Swirl Injector의 Injection Instability에 관한 연구)

  • Park, Byung-Sung;Kim, Ho-Young;Chun, Chul-Kyeun
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.287-293
    • /
    • 2005
  • Most of all combustion system has combustion instability. It is a serious problem in combustion system. Unstable injection is one of the source of combustion instability. The experimental investigation of spray characteristics for simplex swirl injector were conducted experimentally. Two kerosene based fuels were chosen as the atomizing fluid. As the major operating parameters, fuel temperature and injection pressure were chosen, and varied in the range from 253 K to 293 K and from 0.2 MPa to 1.0 MPa, respectively. Direct spray images and mean diameter were measured for the various combination of operating parameters in the flow field. The results of present study show that the injection pressure and spray cone angle are fluctuated at specific conditions while it is continuous steady injection. As the fuel temperature changes continuously, spray cone angle varies discontinuously through the region of injection instability.

  • PDF

A Study on Injection Molding process for Manufacturing about Blower-fan (블로우팬의 사출성형공정에 관한 연구)

  • 김병곤;민병현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.316-319
    • /
    • 2002
  • Injection mold is a manufacturing process used to produce parts of complicated shape at a low cost. Many factors affect the quality of injection molded part during injection molding process. A study on the optimization of injection mold is progressed by using a simulation software like Moldflow. Filling, packing and cooling phases of injection molding processes are analyzed according to the mold design considering the shrinkage of molded part, the degree of filling rate and the wearing of a mold. Taguchi method is applied to analyze the significance of processing parameters and the dynamic characteristics according to the variation of processing parameters. From the results, the mold temperature and packing pressure influenced strongly the shrinkage of injection molded part.

  • PDF

A study on the accuracy of multi-task learning structure artificial neural network applicable to multi-quality prediction in injection molding process (사출성형공정에서 다수 품질 예측에 적용가능한 다중 작업 학습 구조 인공신경망의 정확성에 대한 연구)

  • Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, an artificial neural network(ANN) was constructed to establish the relationship between process condition prameters and the qualities of the injection-molded product in the injection molding process. Six process parmeters were set as input parameter for ANN: melt temperature, mold temperature, injection speed, packing pressure, packing time, and cooling time. As output parameters, the mass, nominal diameter, and height of the injection-molded product were set. Two learning structures were applied to the ANN. The single-task learning, in which all output parameters are learned in correlation with each other, and the multi-task learning structure in which each output parameters is individually learned according to the characteristics, were constructed. As a result of constructing an artificial neural network with two learning structures and evaluating the prediction performance, it was confirmed that the predicted value of the ANN to which the multi-task learning structure was applied had a low RMSE compared with the single-task learning structure. In addition, when comparing the quality specifications of injection molded products with the prediction values of the ANN, it was confirmed that the ANN of the multi-task learning structure satisfies the quality specifications for all of the mass, diameter, and height.

Effect of Geometrical Parameters on Discharge Coefficients of a Shear Coaxial Injector (전단동축형 분사기의 유량계수에 대한 형상학적 변수들의 영향)

  • Ahn, Jonghyeon;Lee, Keunseok;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.95-102
    • /
    • 2020
  • Six shear coaxial injectors for a 3 tonf-class liquid rocket engine using oxygen and methane as propellants were designed and manufactured by considering geometric design parameters such as a recess length and a taper angle. Cold-flow tests on the injectors were performed using water and air as simulants. By changing the water mass flow rate and air mass flow rate, the injection pressure drop under single-injection and bi-injection was measured. The discharge coefficients through the injector oxidizer-side and fuel-side were calculated and the discharge coefficient ratio between bi-injection and single-injection was obtained. Under single-injection, the recess served to reduce the injection pressure drop on the injector fuel-side. For the injectors without recess, the discharge coefficients under bi-injection were almost the same as those under single-injection. However, for the injectors with recess, the taper angle and bi-injection had a significant effect on the discharge coefficient.