• Title/Summary/Keyword: Injection molding simulation

Search Result 262, Processing Time 0.021 seconds

Optimization of Gate and Process Design Factors for Injection Molding of Automotive Door Cover Housing (자동차 도어용 커버 하우징의 사출성형을 위한 게이트 및 공정 설계인자의 최적화)

  • Yu, Man-Jun;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.84-90
    • /
    • 2022
  • The purpose of the cover housing component of a car door is to protect the terminals of the plug housing that connects the electric control unit on the door side to the car body. Therefore, for a smooth assembly with the plug housing and to prevent contaminants from penetrating into the gaps that occur after assembly, the warpage of the cover housing should be minimized. In this study, to minimize the warpage of the cover housing, optimization was performed for design factors related to the mold and processes based on the injection molding simulation. These design factors include gate location, gate diameter, injection time, resin temperature, mold temperature, and packing pressure. To optimize the design factors, Taguchi's approach to the design of experiments was adopted. The optimal combination of the design factors and levels that minimize warpage was predicted through L18-orthogonal array experiments and main effects analysis. Moreover, the warpage under the optimal design was estimated by the additive model, and it was confirmed through the simulation experiment that the estimated result was quite consistent with the experimental result. Additionally, it was found that the warpage under the optimal design was significantly improved compared to both the warpage under the initial design and the best warpage among the orthogonal array experimental results, which numerically decreased by 36.9% and 23.4%, respectively.

A Study for Selecting Optimum Injection Point of the Monitor Cover (모니터 커버 설계를 위한 최적의 사출 위치 선정에 관한 연구)

  • 이태홍;이성수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.157-162
    • /
    • 2000
  • The object is design an optimal injection position on the Monitor Cover. In this paper, the defined injection position are three types, which simulate in melting temperature, molding temperature and weld line in variation. We obtained a result from simulation and descried the result related injection pressure with injection position.

  • PDF

Numerical Simulation of Flow-Induced Birefringence in Injection Molded Disk

  • Lee H. S.;Shyu G. D.;Isayev A. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.41-47
    • /
    • 2003
  • This study is an attempt to understand the birefringence and stress development in an injection molded disk. A computer code was developed to simulate all three stages of the injection molding process - filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. The predicted birefringence was in good agreement with the experimental results.

  • PDF

Numerical simulation of flow-induced birefringence in injection molded disk

  • Shyu, Goang-Ding;Avraam I. Isayev;Lee, Ho-Sang
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.4
    • /
    • pp.159-166
    • /
    • 2003
  • This study is an attempt to understand the birefringence and stress development in an injection molded disk. A computer code was developed to simulate all three stages of the injection molding process filling, packing and cooling by finite element method. The constitutive equation used here was compressible Leonov model. The PVT relationship was assumed to follow the Tait equation. The flow-induced birefringence was related to the calculated flow stresses through the linear stress-optical law. The predicted birefringence was in good agreement with the experimental results.

Optimum Design of Process Conditions to Minimize Residual Stress and Birefringence in Injection -Molded Parts

  • Sejin Han;Huh, Yong-Jeong;Kang, Shin-il
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.17-25
    • /
    • 2001
  • In this paper, a theoretical study has been made to reduce the residual stress and birefringence in the injection-molded parts. An optimization program has been used to minimize the residual stresses and birefringence calculated from a simulation program. The thermally induced stress has been calculated using a linear viscoelasticity model. The flow stress and birefringence has been calculated using the Leonov's viscoelasticity model. This has been applied to the injection molding of a circular disc and a plate. the optimization has been done either by changing process variables while maintaining the mold temperature constant or by varying the mold-wall temperature with time. This study shows the significant reduction in residual stress and birefringence is possible through the optimization of processing conditions.

  • PDF

Robust Design of Warpage in Injection-Molded Parts Using the Response Surface Methodology (반응표면분석법을 이용한 사출성형품의 휨의 강건설계)

  • 박종천;김경모;안흥일
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.493-499
    • /
    • 2001
  • An optimal robust design methodology has been developed to minimize warpage in injection-molded pats. The response surface methodology was applied to obtain a functional relationship between design variables and warpage value, and the modified complex method was used as an optimization tool to search for an optimal design solution over prescribed design region. To attain robustness against process variations, Taguchi's SN ratio was introduced as the design metric. The proposed optimal design procedure was applied to an actual part, the Guide-ASF model of a fax machine, and the usefulness of the methodology was shown through the CAE simulation using a commercial injection molding software package.

  • PDF

A Study on the Robust Minimization of Warpage in Injection-Molded Part via the Optimal Design of Rib Geometry and Process Conditions (리브 형상과 공정조건의 최적설계에 의한 사출제품 휨의 안정적 최소화에 관한 연구)

  • Park, Jong-Cheon;Kim, Kyung-Mo;Lee, Jong-Chan;Koo, Bon-Heung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.90-97
    • /
    • 2009
  • In the study, a design methodology for robust minimization of a warpage in injection-molded part is presented. Taguchi's parameter design method is integrated with a computer simulation tool for injection molding to search for best design with robustness against the process variability by noises. The proposed methodology is based on a two-stage process: (1) reducing a warpage in the part by optimizing the part geometry including the layout and size of ribs, and (2) additionally minimizing the warpage by optimizing process conditions. An example is used to illustrate the usefulness of the design methodology.

  • PDF

Selecting the Optimum Condition of Injection Molding Process by the Taguchi Method and Neural Network (다구찌 방법과 신경회로망을 이용한 사출성형 가공공정의 최적 가공조건 선정에 관한 연구)

  • 홍정의
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.2
    • /
    • pp.71-76
    • /
    • 2002
  • Defining the relationship between the quality of Injection molded parts and the process condition is very complicate because of lots of factors are involved and each factor has a non-linearity. With the development of CAE(Computer Aided Engineering) technology, the estimation of volumetric shrinkage of injection mold parts is possible by computer simulation in spite of restricted application. In this research, the Taguchi method md Neural Network are applied for finding optimal processing condition. The percent of volumetric shrinkage is compared on each case and shows neural network can be successfully applied.

Design of RTM molds for CFRP by carbon fiber draping and resin flow simulation (탄소섬유 드레이핑 및 수지 유동 해석을 통한 CFRP 제조용 RTM 금형 설계)

  • Choi, Gwang Mook;Chae, Hong Jun
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • This paper presents the design strategy for the optimal RTM molds of Carbon Fiber Reinforced Plastic (CFRP) by carbon fiber draping and resin flow simulation. First, the mold shape and molding condition were determined considering the undercut and die face of the product in the draping simulation, which made the preliminary shape of the product by compressing the carbon fiber. After that, the diffusion behavior during the injection of resin in the mold was predicted by the resin flow simulation. Finally, the optimal mold shape was designed by selecting the locations of resin injection port and vent based on total results of simulations. In this paper, the mold of automotive side mirror case was selected as the representative product. Also, the actual mold was manufactured based on the simulation design to confirm the practicality of it. This study is expected to contribute to the industry as a technology to improve the reliability and productivity of CFRP producted by RTM process.

Numerical analysis on foam reaction injection molding of polyurethane, part B: Parametric study and real application

  • Han, HyukSu;Nam, Hyun Nam;Eun, Youngkee;Lee, Su Yeon;Nam, Jeongho;Ryu, Jeong Ho;Lee, Sung Yoon;Kim, Jungin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.6
    • /
    • pp.258-262
    • /
    • 2016
  • Foam reaction injection molding (FRIM) is a widely used process for manufacturing polyurethane foam with complex shapes. The modified theoretical model for polyurethane foam forming reaction during FRIM process was established in our previous work. In this study, using the modified model, parametric study for FRIM process was performed in order to optimize experimental conditions of FRIM process such as initial temperature of mold, thickness of mold, and injection amount of polymerizing mixture. In addition, we applied the modified model to real application of refrigerator cabinet to determine optimal manufacturing conditions for polyurethane FRIM process.