• 제목/요약/키워드: Injection molding simulation

Search Result 262, Processing Time 0.024 seconds

A multi-field CAE analysis for die turning injection application of reservoir fluid tank (리저버 탱크의 Die Turning Injection 적용을 위한 Multi-field CAE 해석)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.66-71
    • /
    • 2021
  • In this study, die turning injection(DTI) mold design for manufacturing reservoir fluid tanks used for cooling in-vehicle batteries, inverters, and motors was conducted based on multi-field CAE. Part design, performance evaluation, and mold design of the reservoir fluid tank was performed. The frequency response characteristics through modal and harmonic response analysis to satisfy the automotive performance test items for the designed part were examined. Analysis of re-melting characteristics and structural analysis of the driving part for designing the rotating die of the DTI mold were performed. Part design was possible when the natural frequency performance value of 32Hz or higher was satisfied through finite element analysis, and the temperature distribution and deformation characteristics of the part after injection molding were found through the first injection molding analysis. In addition, it can be seen that the temperature change of the primary part greatly influences the re-melting characteristics during the secondary injection. The minimum force for driving the turning die of the designed mold was calculated through structural analysis. Hydraulic system design was possible. Finally, a precise and efficient DTI mold design for the reservoir fluid tank was possible through presented multi-field CAE process.

A Study on The Optimum Design of Multi-Cavity Molding Parts Using The Runner Balance Algorithm (런너밸런스 알고리즘을 이용한 멀티캐비티 최적성형에 관한 연구)

  • 박균명;김청균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.41-46
    • /
    • 2003
  • The objective of this paper is to present a methodology for automatically balancing multi-cavity injection molds with the aid of flow simulation. After the runner and cavity layout has been designed, the methodology adjusts runner and gate sizes iteratively based on the outputs of flow analysis. This methodology also ensures that the runner sizes in the final design are machinable. To illustrate this methodology, an example is used wherein a 3-cavity mold is modeled and filling of all the cavities at the same time is achieved. Based on the proposed methodology, a multicavity mold with identical cavities is balanced to minimize overall unfilled volume among various cavities at discrete time steps of the molding cycle. The example indicates that the described methodology can be used effectively to balance runner systems for multi-cavity molds.

Automated Mold Design to Optimize Multi-Quality Characteristics in Injection Molded Parts Based on the Utility Theory and Modified Complex Method (효용이론과 수정콤플렉스법에 기초한 사출 성형품의 다특성 최적화를 위한 자동 금형 설계)

  • Park, Byung-H
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.210-221
    • /
    • 2000
  • Plastic mold designers and frequently faced with optimizing multi-quality issues in injection molded parts. These issues are usually in conflict with each other and thus tradeoff needs to be made to reach a final compromised solution. in this study an automated injection molding design methodology has been developed to optimize multi-quality characteristics of injection molded parts. The features of the proposed methodology are as follows : first utility theory is applied to transform the original multi-objective problem into single-objective problem. Second is an implementation of a direct search-based injection molding optimization procedure with automated consideration of robustness against process variation. The modified complex method is used as a general optimization tool in this study. The developed methodology was applied to an actual mold design and the results showed that the methodology was useful through the CAE simulation using a commercial injection molding software package. Applied to production this study will be of immense value to companies in reducing the product development time and enhancing the product quality.

  • PDF

A Study on the Filling Imbalance in a Geometrically Balanced Injection Mold (기하학적 균형을 갖춘 금형에서 발생하는 성형품의 충전 불균형에 관한 연구)

  • 구양;김병탁;정영득;한성렬;한규택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.931-937
    • /
    • 2004
  • Simultaneous filling is a goal in plastic injection mold that has multi cavities. The moldings which have not been filled at the same time have undesired faults such as dimension inaccuracy, residual stress, law mechanical strength, etc. The best way to simultaneous fill is to be injected in a geometrically balanced runner system. In a general processing, however, in balanced runner system mold, filling imbalance would be observed in cavities. These phenomena result from molten polymer's characteristics and circumstances in balanced runner. In this study, the degree of filling imbalance (DFI) was defined for showing rate of filling imbalance in geometrically balanced injection mold that has 8 cavities. Before the main experiment, an injection molding simulation was conducted to know a pattern of filling imbalance with Moldflow software. There were somewhat differences between results of experiment and simulation about the filling imbalance. The reason for the difference was that the software have not concerned about a situation in a real flow channel. It was also investigated how the injection speed affected on filling imbalance in the experiment.

A Study on mold manufacture of multi-cavity dental iodine container using powder injection molding (분말사출성형을 이용한 다수 캐비티 치과용 요오드 용기 금형제작에 관한 연구)

  • Choi, Jae-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • When iodine container for dental mouth treatment is opened, thread for treatment is cut by the blade in cap of container. Due to the problem of corrosion in a short period time after the reaction of metal blade to iodine solution, it gives impact on patient hygiene. In order to solve the problem, alternative products such as ceramic blade are developed and produced recently. In case of ceramic blade, it is produced by handwork and machine work. In this study, for the quantity production of ceramic blade with powder injection molding, we proposed a delivery system to have uniform charge of 20 cavity. Using Moldflow, simulation on 20 Cavity flow was performed. And then the mold was obtained through mold production and modification.(based on simulation) After injection molding, debinder, sintering process was achieved for ceramic blade, and the cap product was completed via insert injection on ceramic blade. In this study, we verified possibility of quantity production of ceramic blade which showed effective performance for cutting.

Transcription Mechanism of Minute Surface Pattern in Injection Molding

  • YASUHARA Toshiyuki;KATO Kazunori;IMAMURA Hiroshi;OHTAKE Naoto
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.1-6
    • /
    • 2003
  • In injection molding of an optical disk, a toric lens, etc., their performance depends on the transcription preciseness of fine surface structure of a mold. However, transcription behavior has not been made clear yet, because transcription is made in very short time and the structure is very small. In this paper, transcription properties have been examined, by using V-grooves of various sizes. machined on mold surfaces, and the following results are obtained. (1) Transcription properties have been made clear experimentally and it was found that the mold temperature $T_D$ makes great influence on the transcription property and that compression applying time $t_c$ should be taken more than 2.0s for fine transcription. (2) A mechanical model of transcription process, in consideration with strain recovery due to viscoelastic property of polymer. is proposed. (3) Simulation results agree with experimental ones fairly well. It means that the transcription model is useful for estimation of transcription property in advance of an actual. injection molding.

  • PDF

Structural Analysis of Injection Molding Machine Components (사출성형기의 주요 구조부품 해석)

  • U, Chang-Su;Lee, Sang-Rok
    • 연구논문집
    • /
    • s.25
    • /
    • pp.5-12
    • /
    • 1995
  • Mold platen are one of the most important structural components of the injection molding machine. Mold platen had been designed, and manufactured based on the experience and the method of trial and error. Recently, as the computer progress, the numerical simulation method using commercial finite element analysis code has been used to analyze the characteristics of components. It's a urgent problem to reduce the weight of mold platen while preserving the safety and reliability for the structual failure. Finite element analyses to establish basic design technologies and reducing the weight of mold platen were carried out. As result, we are obtained the about 10% reducing the weight for mold platen.

  • PDF

A Study on the Injection Molding for the tight Guide Plate of a Small Sized LCD (1) : finite Element Analysis and Mold Design (소형 LCD 도광판의 사출성형에 관한 연구 (1) : 유한요소해석 및 금형설계)

  • 이호상
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.332-340
    • /
    • 2002
  • The light guide plate of the TFT-LCD reflects the light originated from the light source, and guides the light to the front side of LCD so that we can see images vividly. This paper is concerned with tile injection molding of the light guide plate for the reflective typed LCD related to IMT-2000. The finite element analysis has been carried out based on the pine stress theory to predict both the thermal stresses of the products in the post-filling stage and the in-plane deformation behavior of the products after ejection process. Based on the simulation results, the mold for the light guide plate of a 2inch sized LCD has been designed.

Numerical Simulation of the Sandwich Injection Molding Process (샌드위치 사출성형공정에 관한 수치해석)

  • Mun, Jong-Sin;Sin, Hyo-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1575-1583
    • /
    • 2000
  • Recently, the sandwich injection molding has drawn attention because it offers the flexibility of using the optimal properties of two different but compatible polymers and is also one of the most p romising methods in connection with recycling of thermoplastics. In this paper, a new particle tracing algorithm is presented in order to describe the advancement of core polymer melt during filling stage. The main advantage of this algorithm is the use of identity field information rather than tracking a set of fluid particles. In addition, to model the process accurately, especially to detect the possible