• Title/Summary/Keyword: Injection molding CAE

Search Result 205, Processing Time 0.029 seconds

Modeling of Numerical Simulation in Powder Injection Molding Filling Process (분말사출성형 충전공정에 대한 수치모사 모델)

  • 권태현;강태곤
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.245-250
    • /
    • 2002
  • In this paper we presented numerical method for the simulation of powder injection molding filling process, which is one of the key processes in powder injection molding. Rheological properties of powder binder mixture such as slip phenomena and yield stress were introduced into the numerical analysis model of powder injection molding filling simulation. Numerical model can be classified into two types. One is 2.5D model which can be introduced to a arbitrary thin geometry and the other is full 3D model which can be applied to a general 3D shape. For 2.5D model we showed the validity of our CAE system with several verification examples. Finally we suggested flow analysis model for 3D powder injection molding filling simulation.

Optimization of Injection Molding of Bobbin Part based on CAE (CAE를 이용한 보빈 성형품의 사출성형 최적화)

  • Kwon, Y.S.;Cho, Y.S.;Kim, B.G.;Min, B.H.;Jeong, Y.D.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.68-72
    • /
    • 2002
  • Design of experiment was applied to analyze the shrinkage characteristics of the bobbin molded by injection molding. Among lots of design and processing conditions, the thickness of a bobbin and cooling conditions of a mold were considered. The temperature difference between top and bottom parts of the bobbin was considered as the objective to minimize the shrinkage of a bobbin. Optimal thickness of a bobbin was 2.0mm at the part of body and 1.5mm at the part of wing, respectively. Optimal cooling conditions such as cooling time and coolant inlet temperature were 12 second and $12^{\circ}C$, respectively.

  • PDF

A Study on Hopper Design for Minimizing the Wrapage Deformation at Injection Molding Processes (사출공정에서 휨 변형을 최소로 하는 호퍼 설계 연구)

  • Kim, Young-Suk;Lee, Eui-Joo;Son, Jae-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • Injection molding is a high efficient manufacturing technology for producing plastic parts. On the other hand, the warpage of molded plastic parts is an ubiquitous problem in the injection molding process. The main objective of this study was to minimize the amount of warpage occurring in the injection molding process of a hopper of ATDPS made of crystalline polymer (PP) instead of amorphous polymer (ABS). The moldflow CAE simulation was conducted for the molding process of the hopper to clarify the injection moldability, shear rate, shear stress, warpage by changing the gate shape and the number of ribs installed on the top of the hopper flange. The wide gate shape of runner system and multiple rib installation were found to be useful for minimizing the warpage of the hopper. The validity of the CAE simulations was supported by the injection molding experiment for the optimized design case.

The Effects of Discharge Condition on Mechanical properties of Injection Moldings (사출 조건이 사출품의 기계적 성질에 미치는 영향)

  • 최양호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.84-91
    • /
    • 1997
  • In producing moldings by using an injection mold, several variables such as the metal mold and the condition of injection molding should be selected properly in order to obtain good quality of moldings. In this study, focussed are the mechanical properties of injection moldings, since many researches on injection have been focussed mainly on the molding quality, injection pressure, and bulk temperature but the properties of injection moldings have not been studied extensively. The mechanical properties of present injection moldings can be improved simply by changing the molding material and the injection conditon without changind the metal mold. To have the final products meet the specified molding quality and mechanical properties at the same time, the bulk temperature of injection, pressure variation, volumetric shrinkage, stress, and cooling should be analized by CAE(computer aided engineering) after injection mold design. In this paper, the effects of dischare condition on mechanical properties of injection moldings are studied by testing the moldings which are injected by varying injection conditions.

  • PDF

Numerical study on the blowing deformation characteristics of a square shaped preform (사각 프리폼 블로우 성형 특성에 관한 수치적 연구)

  • Cho, Seung-Hyun;Song, Min-Jae;Lee, Dong-Won;KO, Young-Bae
    • Design & Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2015
  • This study presents the preform injection molding and the blow molding of the injection stretch-blow molding process for PET bottles. The numerical analysis of the injection molding and the blow molding of a preform is considered in this paper using CAE with a view to minimize the warpage and the thickness. In order to determine the design parameters and processing conditions in injection/blow molding, it is very important to establish the numerical model with physical phenomenon. In this study, we appropriately predicted the warpage, deformation and thickness distribution along the product walls.

  • PDF

A Study on Neural Network Modeling of Injection Molding Process Using Taguchi Method (다구찌방법을 이용한 사출성형공정의 신경회로망 모델링에 관한 연구)

  • Choe, Gi-Heung;Yu, Byeong-Gil;Hong, Tae-Min;Lee, Gyeong-Don;Jang, Nak-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.765-774
    • /
    • 1996
  • Computer Integrated Manufacturing(CIM) requires models of manufacturing processes to be implemented on the computer. These models are typically used for determining optimal process control parameters or designing adaptive control systems. In spite of the progress made in the mechanistic modeling, however, empirical models derived from experimental data play a maior role in manufacturing process modeling. This paper describes the development of a meural metwork medel for injection molding. This paper describes the development of a nueral network model for injection molding process. The model uses the CAE analysis data based on Taguchi method. The developed model is, then, compared with the traditional polynomial regression model to assess the applicabilit in practice.

Injection Molding Analysis of Map Pocket with a Speaker Grill Using Shell Element (박막 요소를 이용한 스피커 그릴 일체형 맵 포켓의 사출 성형 해석)

  • Kim, Hong-Seok;Jo, Myeong-Sang;Son, Jung-Sik;Seo, Tae-Su;Kim, Tae-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1294-1301
    • /
    • 2001
  • In order to reduce the time and cost for assembly, automobile speaker grills have been injection molded with door trims or map pockets in one piece recently. However, several defects such as short shots or air traps can easily occur due to the decreased fluidity of the melting polymer according to the excessive heat transfer to the mold. Therefore, it is necessary to optimize the resin feed system and predict possible defects by CAE analysis. However it is not possible to obtain exact analysis results for the speaker grill by using general shell elements since the heat transfer in the thickness direction which is the dominant factor of the filling stage can not be considered. Therefore, there have been several efforts to simulate the injection molding nature of the speaker grill by using shell elements with an effective thickness which is smaller than the actual thickness of the part. Two empirical values have been recommended for the effective thickness in real practice. One is 50∼70% of the thickness of the speaker grill and another is the gap distance between the adjacent holes. In this paper, CAE analyses of a map pocket with a speaker grill were conducted using shell elements with both of these recommended effective thicknesses, and the predicted flow fronts were compared with the findings from injection molding experiments. The commercial code MOLDFLOW was used for injection molding analysis and an 850 ton injection molding machine was used for experiments.