• Title/Summary/Keyword: Injection molding CAE

Search Result 204, Processing Time 0.03 seconds

A Study on Dimension Optimization of Injection-molded Automotive Bumper by Six Sigma (6시그마를 이용한 자동차 범퍼의 치수 최적화에 대한 연구)

  • Kim, Joo-Kwon;Kim, Jong-Sun;Lee, Jun-Han;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.109-116
    • /
    • 2017
  • In this study, the optimization of the overall dimensions of an automobile bumper was investigated through CAE and experiment using the Six Sigma method and design of experiment (DOE) method, respectively. Injection pressure, injection speed, injection time, cooling time, holding time, injection temperature, and holding pressure were selected as the vital parameters affecting the overall width of product through analysis of trivial many using CAE. The optimal values were determined using the DOE method, and we analyzed the improvement by applying the optimal conditions to the production process. As a result, the mean value of the overall width was close to the target value, with a deviation of 0.05mm, and the processability and I-MR control were remarkably improved. Finally, the dimension pass rate of the product improved by 20%.

Study on Improving Flow Balance and Clamp Force of Family Mold for Refrigerator Shelf (냉장고용 선반 패밀리금형의 유동 밸런스와 클램프힘 개선에 관한 연구)

  • Park, Je-Hong;Yoon, Kyeong-Won;Ko, Chang-Oh;Seo, Sang-Won;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.561-568
    • /
    • 2014
  • Injection molding industries realize the necessity of developing family molds to improve competitiveness. One of the primary causes of manufacturing defective products is the imbalance of flow in a family mold. In this study, the family mold of a shelf for refrigerators is analyzed by using CAE software. First, the flow balance, clamping force, and injection pressure are analyzed for different gate diameters of two cavities. Second, the flow balance, clamping force, and injection pressure are improved when the two gate valves are open at different times. Finally, the results of filling analysis are compared with the test injection product.

A Study on the Filling Imbalances between Multi-Cavity in Hot-Runner Mold (핫러너 금형에서 다수 캐비티 사이에 발생하는 충전불균형에 관한 연구)

  • Han Seong Ryeol;Kang Chul Min;Han Kyu Taek;Jeong Yeong Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.173-178
    • /
    • 2005
  • Recently plastic parts are molded for the purpose of mass production in multi-cavity system. Therefore, designer is usually designing mold that has geometrically balanced runner lay-out for filling balance at each cavity. Although, mold is manufactured with geometrically balanced runner lay-out, there are actually filling imbalances in the cavities. These filling imbalances phenomenon are caused by complicated interaction between melt and mold. In this study, based on previous studies for filling imbalances in cold-runner mold, filling imbalances in hot-runner mold were investigated by CAE and injection molding experiments. ABS and PMMA as amorphous polymer, PA as crystalline polymer were used to compare the filling imbalances. There were different results of CAE and experiment. The filling imbalances decreased as injection rate increased without regard to kind of resins and were lower than the one of cold-runner.

Numerical study on the effect of the PET bottle thickness difference for blow molding process conditions (블로우 성형 공정 변수가 PET 용기의 두께 편차에 미치는 영향에 관한 수치해석 연구)

  • Kim, Jeong-soon;Kim, Jong-duck
    • 대한공업교육학회지
    • /
    • v.34 no.2
    • /
    • pp.321-330
    • /
    • 2009
  • This study presents the blow molding of injection stretch-blow molding process for PET bottle. The numerical analysis of the blow molding of PET bottle is considered in this paper using CAE with a view to minimize the thickness difference. In order to determine the design parameters and processing conditions in blow molding, it is very important to establish the numerical model with physical phenomenon. In this study, a shell model with thickness has been introduced for the purpose and blow simulations with 3-type blow process condition are carried out. The simulations resulted in the thickness distribution in good agreement with the physical phenomenon. Also, from the result of numerical analysis, we appropriately predicted the thickness distribution along the PET bottle wall and Using the result of numerical analysis we apply the preform design and blow molding process condition for optimization.

A study on the warpage in injection molded part for various rib design (사출성형품의 리브 설계에 따른 휨의 연구)

  • Lee, Min;Lyu, Min-Young
    • Design & Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.54-61
    • /
    • 2008
  • Warpage, which is one of the molding trouble, acts as possible factor which results in defect in assembly. In this study, a mold was designed to produce specimens with rib parallel to flow direction, specimens with rib perpendicular to flow direction and specimens without rib. This work researched change of warpage according to injection molding condition such as injection pressure, packing pressure, packing time, resin temperature, mold temperature in non-crystalline resins(PC, ABS), crystalline resins(PP, PA66), and 30% glass fiber reinforced-resins(PC, ABS, PP, PA66).Specimens with rib and Crystalline resins show more warpage than specimens without rib and non-crystalline resins, respectively. Glass fiber reinforced-resins and specimens with rib parallel to flow direction show smaller warpage than conventional resins and specimens with rib perpendicular to flow, respectively. Specimens with rib and specimens without rib show reduced warpage as packing time increases. In addition, warpage increase as resin temperature increases. It is found that CAE shows similar tendency with experiment as packing time, resin temperature. when the rib is caused, warpage will reduce and prevent the transformation. product of a irregular form occurs warpage. In the study It'll be basic data that product occurs warpage, preferablity.

  • PDF

Injection Molding Technology for Thin Wall Plastic Part - II. Side Gate Removal Technology Using Cold Press Cutting Process (초정밀 박육 플라스틱 제품 성형기술- II. 냉간 절단 공정 활용 사이드 게이트 제거기술)

  • Heo, Young-Moo;Shin, Kwang-Ho;Choi, Bok-Seok;Kwon, Oh-Keun
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2016
  • In the semiconductor industry the memory and chip were developed to high density memory and high performance chip, so circuit design was also high integrated and the test bed was needed to be thin and fine pitch socket. LGA(Land Grid Array) IC socket with thin wall thickness was designed to satisfy this requirement. The LGA IC socket plastic part was manufacture by injection molding process, it was needed accuracy, stiffness and suit resin with high flowability. After injection molding process the side gates were needed to remove for further assembly process. ln this study, the cold press cutting process was applied to remove the gates. For design of punch and die, the cold press cutting analysis was implemented by$DEFORM-2D^{TM}$ ln consideration of the simulation results, an adequate punch and die was designed and made for the cutting unit. In order to verify the performance of cutting process, the roughness of cutting section of the part was measured and was satisfied in requirement.

A Study on the Improvement of Optical Efficiency for The 2 inch LGP Considering Injection Molding Characteristics (사출성형 특성을 고려한 2인치 도광판의 광효율 향상에 관한 연구)

  • Do, Y.S.;Hwang, C.J.;Yoon, K.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.322-327
    • /
    • 2008
  • LGP is a key component of LCD back light unit because it determines brightness and sharpness of the display image. Usually, it has optical patterns fabricated on the bottom surface. These optical patterns convert point or line sources placed in the side of LGP to plane source at the top surface by changing the propagating direction of the incident light. In the present paper the LiGA-reflow method was applied to fabricate the LGP mold. Furthermore, the optical simulation considering the replication ratio of pattern height was applied to the pattern design. The optical simulation through systematic correction scheme was adopted to find the optimum distribution of pattern density. Finally, the stamper fabricated by this method was installed in the mold and LGP was produced by injection molding. As a result of luminance measurement for the final product, the average luminance and luminance uniformity was measured 3,180 nit and 84%, respectively. Consequently, the mold fabrication method using the LiGA-reflow and optical simulation(CAE) can save the expense and time compared with the existing fabrication methods(laser ablation and chemical etching).