• Title/Summary/Keyword: Injection molding CAE

Search Result 205, Processing Time 0.029 seconds

Application of Injection molding CAE technology for Optical parts (광학소자에 대한 사출성형 CAE 기술 적용)

  • Do, Re-Lee
    • The Optical Journal
    • /
    • s.101
    • /
    • pp.43-45
    • /
    • 2006
  • 근래에 일본을 비롯하여 한국과 대만 등 아시아 여러나라에서 광학소자의 플라스틱화로 흐름이 급속히 진행되고 있는 가운데 광학소자에 생기는 성형불량을 예측하는 기술에 관심이 모아지고 있다. 도레이 주식회사에서는 3차원 유한요소 모델용 시스템을 세계에서 처음 실용화에 성공한 바 있으며, 본 고에서는 이 기술에 대해 소개하고자 한다. 광학소자에 관한 CAE 해석의 역사는 아직 시작단계지만 요구 정밀도는 상당히 높기 때문에 끊임없이 해석기술의 정밀도화에 노력하고 있다. 또 미세 V(브이)홈에 있어서 전사성 평가에 대해서도 요구가 높기 때문에 예측 기술의 확립을 도모하고 있다.

  • PDF

A study on the injection molding CAE analysis for the car back mirror frame replacement by plastic (자동차용 Back-mirror용 Frame의 플라스틱화에 대한 CAE 해석 연구)

  • 허영무
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.10-21
    • /
    • 1994
  • 본 연구에서는 현재 자동차의 좌, 우측 Back Mirror의 부품중의 하나인 Frame을 현재 Zinc Diecasting 제품을 플라스틱으로 대체하는데 따른 여러가지 문제점을 플라스틱으로 대체하는데 따른 여러가지 문제점을 플라스틱 사출성형 CAE 해석을 이용하여 검증한 뒤 그 결과를 토대로 실제 제품개발 및 금형개발 등에 응용하기 위하여 연구를 행하는데 그 목적이 있다.

  • PDF

The effect of Gate type on Injection Molding of Automotive Bumper (자동차 범퍼금형에서의 게이트 형상이 제품 성형에 미치는 영향)

  • Hwang S.H.;Ji S.D.;Kim M.K.;Kwon Y.S.;Jeong Y.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1724-1727
    • /
    • 2005
  • Injection molding process is one of the processes that can mold plastic product as low cost. However, manufacturing process of automobile bumper mold has lots of trial and error. Especially, desiging of a huge mold such as bumper mold is needed to establish a design standard for runner system. In this study, CAE was conducted to observe the variation of melt-flow by changing runner and gate type in automobile bumper mold as preceding study for a standard design of runner system.

  • PDF

A study on the Large Area Rapid-Injection Compression Molding for Mold Optimum Design (대면적 쾌속 사출압축성형을 위한 금형설계 최적화)

  • Kim, T.H.;Kim, J.Y.;Kim, J.S.;Kang, J.J.;Kim, J.S.;Roh, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.99-102
    • /
    • 2009
  • The recent LCD TV market has made efforts to produce thinner, brighter, and clearer products, and experienced the rapid light source replacement from a line source of light CCFL to a point source of light LED. In particular, LGP(Light Guiding Panel) among key parts composing BLU(Back Light Unit) has limits of the injection molding technology as well as the mold design, its processing and manufacturing technology so that it is hard to produce large LGP over 40 inch. To produce large light-guide panels over 40 inch under the injection molding process, a mold 3D model was developed in the design process before manufacturing a mold and structure unification was processed through CAE analysis. As a result, it was possible to construct the mold design process, and it is expected to manufacture the optimized mold by applying the mold design and manufacturing process of large-scale rapid injection-compression molding that will be produced in the future.

  • PDF

A Study on the Optimal Conditions according to the Content of the Glass Fiber in the Resin-Automotive Motor Housing Application

  • Jin-Gu Kang;Gang-hyun Oh;Kyung-a Kim
    • Design & Manufacturing
    • /
    • v.18 no.3
    • /
    • pp.9-14
    • /
    • 2024
  • Among the various plastic polymer molding methods, thermoplastic resins are most commonly used for mass production due to their suitability for high-volume manufacturing. However, recently, thermosetting resins have been utilized depending on product design and functionality, necessitating appropriate mold design and injection conditions to achieve suitable molded products. Therefore, resin selection must be considered not only in terms of product design but also based on functionality, taking into account the physical and mechanical properties of the resin. Additionally, since the flow characteristics of the resin are critical in injection molding, molding conditions should be set according to the thermal, physical, and rheological properties of the resin.This study focuses on the effects of filler content (glass fiber) in thermosetting fiber-reinforced plastics (FRP), specifically Bulk Molding Compound (BMC) resin, which is crucial for thermal deformation in automotive motor housing products. The resins used in this study include Generic BMC1 resin, BMC1 with 15% glass fiber, and BMC1 with 30% glass fiber. The research employs CAE (Computer-Aided Engineering) to investigate strain under basic conditions for the BMC resin and the strain variations with the addition of glass fiber. It also examines the impact of filler content on injection molding conditions, specifically mold temperature and curing time. Experimental results indicate that mold temperature has the most significant effect among the injection conditions, while the impact of curing time was relatively minor.

A Knowledge-based Design System for Injection Molding

  • Huh, Yong-Jeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.11-17
    • /
    • 2001
  • The design and manufacture of injection molded polymeric parts with desired properties is a costly process dominated by empiricism, including the repeated modification of actual tooling. This paper presents an expert design evaluation system which can predict the mechanical performance of a molded product and diagnose the design before the actual mold is machined. The knowledge-based system synergistically combines a rule-based expert system with CAE programs. Heuristic knowledge of injection molding is formalized as rules of an expert consultation system. The expert system interprets the analytical results of the process simulation, predicts the performance, evaluates the design and generates recommendations for optimal design alternatives.

  • PDF

Flow Analysis of Filling Imbalance according to Runner Shapes in Injection Mold (사출금형의 러너시스템 형상에 따른 충전불균형 유동해석 모델)

  • Jang, Min-Kyu;Go, Seung-Woo;Kim, Yeong-Min;Noh, Byeong-Su;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.16-20
    • /
    • 2008
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing; However, even though geometrically balanced runner is used, filling imbalances have been observed. In these day, the CAE has been used widely in injection molding. However, CAE with fusion mesh can't indicate such as jetting, flow mark and filling imbalance in multi cavity mold. In this study, we investigated the filling imbalance according to runner shapes by CAE analysis. As a result in CAE, in case of binary branch runner system, filling imbalance was indicated between cavity to cavity, but the flow pattern of each cavity uniformed in unary branch runner system.

  • PDF

Residual Stress Estimation and Deformation Analysis for Injection Molded Plastic Parts using Three-Dimensional Solid Elements (3 차원 입체요소를 사용한 사출성형품의 잔류응력 예측 및 후변형 해석)

  • Park, Keun;Ahn, Jong-Ho;Yim, Chung-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.507-514
    • /
    • 2003
  • Most of CAE analyses for injection molding have been based on the Mele Shaw's approximation: two-dimensional flow analysis. in some cases, that approximation causes significant errors due to loss of the geometrical information as well as simplification of the flow characteristics in the thickness direction. Although injection molding analysis software using three-dimensional solid elements has been developed recently, such as Moldflow Flow3D, it does not contain a deformation analysis function yet. The present work covers three-dimensional deformation analysis or injection molded plastic parts using solid elements. A numerical scheme for deformation analysis has bun proposed from the results of injection molding analysis using Moldflow Flow3D. The accuracy of the proposed approach has been verified through a numerical analysis of rectangular plates with various thicknesses in comparison with the classical shell-based approach. In addition, the reliability of the approach has also been proved through an industrial example. an optical plastic lens, in comparison of real experiments.

Study on the design optimization of injection-molded DVD-Tray parts using CAE Simulation (플라스틱 DVD-Tray의 박막 사출성형을 위한 최적화 설계 Simulation에 관한 연구)

  • Chung, Jae-Youp;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1726-1732
    • /
    • 2008
  • Injection molding is one of plastic forming technology which can easily mass-produce plastic parts with various and even complex shape. The technology has lots of difficulties in making a good part due to phase change of material, high applied pressure, and fast melt flow speed in the cavity. To overcome the problems, they had to make trial and error method until the CAE(Computer Aided Engineering) could be a tool for concurrent engineering. In this paper, we investigate the optimal design for a plastic DVD tray part by systematic approach of the commercial CAE program. In design, we should consider two objectives which are both dimensional stability and cost-down. The dimension of the part is crucial because the tray should carry a DVD correctly, but the part is too thin to injection-mold easily. In order to improve the moldability, the mold is designed in the form of stack mold which is a kind of 4 hot runner system. In first, we changed the stack-mold system with one hot-runner to cost down, and decided the optimal position of the gate. After that, we investigate the effect of both the layout of cooling channels and the cooling temperature on the shrinkage of the DVD tray. A optimal simulation approach, the gate design is 2Gate#3 and the layout is Case2 cooling line as the optimal temperature of $70^{\circ}C$. The Moldflow and PC+ABS are used for the CAE program and material respectively.

Finite Element Analysis of Powder Injection Molding Filling Process Including Yield Stress and Slip Phenomena (항복응력과 미끄럼현상을 고려한 분말사출성형 충전공정의 유한요소해석)

  • 박주배;권태헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1465-1477
    • /
    • 1993
  • Powder Injection Molding(PM) is an advanced and complicated technology for manufacturing ceramic or metal products making use of a conventional injection molding process, which is generally used for plastic products. Among many technologies involved in the successful PIM, injection molding process is one of the key steps to form a desired shape out of powder/binder mixtures. Thus, it is of great importance to have a numerical tool to predict the powder injection molding filling process. In this regard, a finite element analysis system has been developed for numerical simulations of filling process of powder injection molding. Powder/polymer mixtures during the filling pro cess of injection molding can be rheologically characterized as Non-Newtonian fluids with a so called yield phenomena and have a peculiar feature of apparent slip phenomena on the wall boundaries surrounding mold cavity. Therefore, in the present study, a physical modeling of the filling process of powder/polymer mixtures was developed to take into account both the yield stress and slip phenomena and a finite element formulation was developed accordingly. The numerical analysis scheme for filling simulation is accomplished by combining a finite element method with control volume technique to simulate the movement of flow front and a finite difference method to calculate the temperature distribution. The present study presents the modeling, numerical scheme and some numerical analysis results showing the effect of the yield stress and slip phenomena.