• Title/Summary/Keyword: Injection methods

Search Result 2,877, Processing Time 0.033 seconds

Study of the Sludge Formation Mechanism in Advanced Packaging Process and Prevention Method for the Sludge (어드밴스드 패키징 공정에서 발생할 수 있는 슬러지의 인자 확인 및 형성 방지법의 제안)

  • Jiwon Kim;Suk Jekal;Ha-Yeong Kim;Min Sang Kim;Dong Hyun Kim;Chan-Gyo Kim;Yeon-Ryong Chu;Neunghi Lee;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.35-45
    • /
    • 2023
  • In this study, the sludge formation in the wastewater drain from the advanced packaging process mechanisms are revealed as well as the key factors, materials, and sludge prevention methods using surfactant. Compared with that of conventional packaging process, advanced packaging process employ similar process to the semiconductor fabrication process, and thus many processes may generate wastewater. In specific, a large amount of wastewater may generate during the carrier wafer bonding, photo, development, and carrier wafer debonding processes. In order to identify the key factors for the formation of sludge during the advanced packaging process, six types of chemicals including bonding glue, HMDS, photoresist (PR), PR developer, debonding cleaner, and water are utilized and mixing evaluation is assessed. As a result, it is confirmed that the black solid sludge is formed, which is originated by the sludge seed formation by hydrolysis/dehydration reaction of HMDS and sludge growth via hydrophobic-hydrophobic binding with sludge seed and PR. For the sludge prevention investigation, three surfactants of CTAB, PEG, and shampoo are mixed with the key materials of sludge, and it is confirmed that the sludge formations are successfully suppressed. The underlying mechanism behind the sludge formation is that the carbon tails of the surfactant bind to PR with hydrophobic-hydrophobic interaction and inhibit the reaction with HMDS-based slurry seeds to prevent the sludge formation. In this regard, it is expected that various problems like clogging in drains and pipes during the advanced packaging process may effectively solve by the injection of surfactants into the drains.

Analysis of Aminoglycoside Antibiotics in Meat and Cell Culture Medium Coupled with Direct Injection of an Ion-pairing Reagent (이온쌍 시약 직접 주입법을 활용한 육류 및 세포배양액 내 아미노글리코사이드계 항생제 분석)

  • Kyung-Ho Park;Song-Yi Gu;Geon-Woo Park;Jong-Jib Kim;Jong-soo Lee;Sang-Gu Kim;Sang-Yun Lee;Hyang Sook Chun
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.319-331
    • /
    • 2023
  • Aminoglycoside antibiotics, also known as aminoglycosides (AGs), are veterinary drugs effective against a wide range of gram-negative and gram-positive bacteria. Owing to their recent use in cultured meats, it has become essential to establish an analytical method for safety management. AGs are highly polar compounds, and ion-pair reagents (IPRs) are used to ensure component separation. Owing to the high possibility of potential mechanical problems resulting from IPR addition to the mobile phase, an analytical method in which IPRs are added directly to the vial was explored. In this study, methods for analyzing 10 AGs via liquid chromatography-tandem mass spectrometry (LC-MS/MS) with the addition of two IPRs were validated for selectivity, detection limit, quantitation limit, recovery, and precision. The detection limit was 0.0001-0.0038 mg/kg, the quantification limit was 0.004-0.011 mg/kg, and the linearity (R2) within the concentration range of 0.01-0.5 mg/kg was over 0.99. Recovery and precision (expressed as relative standard deviation) evaluated in the two matrices (beef and cell culture media) ranged from 70.7% to 120.6% and 0.2% to 24.7%, respectively. The validated AG analytical method was then applied to 15 meats prepared from chicken, beef, and pork, and 6 culture media and additives used in cultured meat. No AGs were detected in any of the 15 meats distributed in Korea; however, streptomycin and dihydrostreptomycin were detected at levels ranging from 695.85 to 1152.71 mg/kg and 6.35 to 11.11 mg/kg, respectively, in the culture media additives. The LC-MS/MS method coupled with direct addition of IPRs to the vial can provide useful basic data for AG analysis and safety evaluation of meats as well as culture media and additives for cultured meats.

Studies on Ancylostomiasis I. An Experimental Study on Hookworm Infection and Anemia (구충증(鉤蟲症)에 관(關)한 연구(硏究) 제1편(第1篇) 구충(鉤蟲)의 감염(感染) 및 구충성빈혈(鉤蟲性貧血)에 관(關)한 고찰(考奈))

  • Lee, Mun-Ho;Kim, Dong-Jip;Lee, Jang-Kyu;Seo, Byong-Sul;Lee, Soon-Hyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.1 no.1
    • /
    • pp.55-66
    • /
    • 1967
  • In view of its prevalence in the Far East area, a more detailed knowledge on the hookworm infection is one of the very important medical problems. The present study was aimed to; determine the infectivity of the artificially hatched ancylostoma duodenale larvae in man after its oral administration, evaluate the clinical symptomatology of such infection, determine the date of first appearance of the ova in the stool, calculate the blood loss per worm per day, assess the relation-ships between the ova count, infectivity(worm load), blood loss and severity of anemia. An erythrokinetic study was also done to analyse the characteristics of hookworm anemia by means of $^{59}Fe\;and\;^{51}Cr$. Materials and Methods Ten healthy male volunteers(doctors, medical students and laboratory technicians) with the ages ranging from 21 to 40 years were selected as the experimental materials. They had no history of hookworm infection for preceding several years, and care was taken not to be exposed to reinfection. A baseline study including a through physical examinations and laboratory investigations such as complete blood counts, stool examination and estimation of the serum iron levels was done, and a vermifuge, bephenium hydroxynaphoate, was given 10 days prior to the main experiment. The ancylostoma duodenale filariform larvae were obtained in the following manner; The pure ancylostoma duodenale ova were obtained from the hookworm anemia patients and a modified filter paper method was adopted to harvest larger number of infective larvae, which were washed several times with saline. The actively moving mature larvae were put into the gelatine capsules, 150 in each, and were given to the volunteers in the fasting state with 300ml. of water. The volunteers were previously treated with intramuscular injection of 15mg. of chlorpromazine in order to prevent the eventual nausea and vomiting after the larvae intake. The clinical symptoms and signs mainly of the respiratory and gastrointestinal tracts, appearance of the ova and occult blood in the stool etc. were checked every day for the first 20 days and then twice weekly until the end of the experiment, which usually lasted for about 3 months. Roentgenological survey of the lungs was also done. The hematological changes such as the red blood cell, white blood cell and eosinophil cell counts, hemoglobin content and serum iron levels were studied. The appearance of the ova in the stool was examined by the formalin ether method and the ova were counted in triplicate on two successive days using the Stoll's dilution method. The ferrokinetic data were calculated by the modified Huff's method and the apparent half survival time of the red blood cells by the modified Gray's method. The isotopes were simultaneously tagged and injected intravenously, and then the stool and blood samples were collected as was described by Roche et al., namely, three separate 4-day stool samples with the blood sample drawing before each 4-day stool collection. The radio-activities of the stools ashfied and the blood were separately measured by the pulse-height analyser. The daily blood loss was calculated with the following formula; daily blood loss in $ml.=\frac{cpm/g\;stool{\times}weight\;in\;g\;of\;4-day\;stool}{cpm/ml\;blood{\times}4}$ The average of these three 4-day periods was given as the daily blood loss in each patient. The blood loss per day per worm was calculated by simply dividing the daily blood loss by the number of the hookworm recovered after the vermifuge given twice a week at the termination of the experiment. The iron loss in mg. through the gastrointestinal tract was estimated with the daily iron loss in $mg=\frac{g\;Hgb/100ml{\times}ml\;daily\;blood\;loss{\times}3.40}{100}$ 3.40=mg of iron per g Hgb following formula; Results 1. The respiratory symptoms such as cough and sputum were noted in almost all cases within a week after the infection, which lasted about 2 weeks. The roentgenological findings of the chest were essentially normal. A moderate degree of febril reaction appeared within 2 weeks with a duration of 3 or 4 days. 2. The gastrointestinal symptoms such as nausea, epigastric fullness, abdominal pain and loose bowel appeared in all cases immediately after the larvae intake. 3. The reduction of the red blood cell count was not remarkable, however, the hemoglobin content and especially the serum iron level showed the steady decreases until the end of the experiment. 4. The white blood cells and eosinophil cells, on the contrary, showed increases in parallel and reached peaks in 20 to 30 days after the infection. A small secondary rise was noted in 2 months. 5. The ova first appeared in the stool in 40. 1 days after the infection, ranging from 29 to 51 days, during which the occult blood reaction of the stool became also positive in almost cases. 6. The number of ova recovered per day was 164, 320 on the average, ranging from 89,500 to 253,800. The number of the worm evacuated by vermifuge was in rough correlation with the number of ova recovered. 7. The infectivity of ancylostoma duodenale was 14% on the average, ranging from 7.3 to 20.0%, which is relatively lower than those reported by other workers. 8. The mean fecal blood loss was 5.78ml. per day, with a range of from 2.6 to 11.7ml., and the mean blood loss per worm per day was 0.30ml., with a range of from 0.13 to 0.73ml., which is in rough coincidence with those reported by other authors. There appeared to exist, however, no correlation between the blood loss and the number of ova recovered. 9. The mean fecal iron loss was 2.02mg. per day, with a range of from 1.20 to 3.89mg., which is less than those appeared in the literature. 10. The mean plasma iron disappearance rate was 0.80hr., with a range of from 0.62 to 0.95hr., namely, a slight accerelation. 11. The hookworm anemia appeared to be iron deficiency in origin caused by continuous intestinal blood loss.

  • PDF

Small Animal PET Imaging with [$^{124}I$]FIAU for Herpes Simplex Virus Type 1 Thymidine Kinase Gene Expression in a Hepatoma Model (간암 동물 모델에서 2'-fluoro-2'-deoxy-1-${\beta}$-D-arabinofuranosyl-5-[$^{124}I$iodo-uracil ($[^{124}I]FIAU$) 소동물 PET 영상 연구)

  • Chae, Min-Jeong;Lee, Tae-Sup;Kim, June-Youp;Woo, Gwang-Sun;Jumg, Wee-Sup;Chun, Kwon-Soo;Kim, Jae-Hong;Lee, Ji-Sup;Ryu, Jin-Sook;Cheon, Gi-Jeong;Choi, Chang-Woon;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.3
    • /
    • pp.235-245
    • /
    • 2008
  • Purpose: The HSV1-tk gene has been extensively studied as a type of reporter gene. In hepatocellular carcinoma (HCC), only a small proportion of patients are eligible for surgical resection and there is limitation in palliative options. Therefore, there is a need for the development of new treatment modalities and gene therapy is a leading candidate. In the present study, we investigated the usefulness of substrate, 2'-fluoro-2'-deoxy-1-${\beta}$-D-arabino-furanosyi-5-[$^{124/125}I$]iodo- uracil ([$I^{124/125}I$]FIAU) as a non-invasive imaging agent for HSV1-tk gene therapy in hepatoma model using small animal PET. Material and Methods: With the Morris hepatoma MCA cell line and MCA-tk cell line which was transduced with the HSV1-tk gene, in vitro uptake and correlation study between [$^{125}I$]FIAU uptake according to increasing numeric count of percentage of MCA-tk cell were performed. The biodistribution data and small animal PET images with [$^{124}I$]FIAU were obtained with Balb/c-nude mice bearing both MCA and MCA-tk tumors. Results:, Specific accumulation of [[$^{125}I$]FIAU was observed in MCA-tk cells but uptake was low in MCA cells. Uptake in MCA-tk cells was 15 times higher than that of MCA cells at 480 min. [$^{125}I$]FIAU uptake was linearly correlated (R2 =0.964, p =0.01) with increasing percentage of MCA-tk numeric cell count. Biodistribution results showed that [$^{125}I$]FIAU was mainly excreted via the renal system in the early phase. Ratios of MCA-tk tumor to blood acting were 10, 41, and 641 at 1 h, 4 h, and 24 h post-injection, respectively. The maximum ratio of MCA-tk to MCA tumor was 192.7 at 24 h. Ratios of MCA-tk tumor to liver were 13.8, 66.8, and 588.3 at 1 h, 4 h, and 24 h, respectively. On small animal PET, [$^{124}I$]FIAU accumulated in substantial higher levels in MCA-tk tumor and liver than MCA tumor. Conclusion: FIAU shows selective accumulation to HSV1-tk expressing hepatoma cell tumors with minimal uptake in normal liver. Therefore, radiolabelled FIAU is expected to be a useful substrate for non-invasive imaging of HSV1-tk gene therapy and therapeutic response monitoring of HCC.

The difference of image quality using other radioactive isotope in uniformity correction map of myocardial perfusion SPECT (심근 관류 SPECT에서 핵종에 따른 Uniformity correction map 설정을 통한 영상의 질 비교)

  • Song, Jae hyuk;Kim, Kyeong Sik;Lee, Dong Hoon;Kim, Sung Hwan;Park, Jang Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • Purpose When the patients takes myocardial perfusion SPECT using $^{201}Tl$, the operator gives the patients an injection of $^{201}Tl$. But the uniformity correction map in SPECT uses $^{99m}Tc$ uniformity correction map. Thus, we want to compare the image quality when it uses $^{99m}Tc$ uniformity correction map and when it uses $^{201}Tl$ uniformity correction map. Materials and Methods Phantom study is performed. We take the data by Asan medical center daily QC condition with flood phantom including $^{201}Tl$ 21.3 kBq/mL. After postprocessing with this data, we analyze CFOV integral uniformity(I.U) and differential uniformity(D.U). And we take the data with Jaszczak ECT Phantom by American college of radiology accreditation program instruction including $^{201}Tl$ 33.4 kBq/mL. After post processing with this data, we analyze spatial Resolution, Integral Uniformity(I.U), coefficient of variation(C.V) and Contrast with Interactive data language program. Results In the flood phantom test, when it uses $^{99m}Tc$ uniformity correction map, Flood I.U is 3.6% and D.U is 3.0%. When it uses $^{201}Tl$ uniformity correction map, Flood I.U is 3.8% and D.U is 2.1%. The flood I.U is worsen about 5%, but the D.U is improved about 30% inversely. In the Jaszczak ECT phantom test, when it uses $^{99m}Tc$ uniformity correction map, SPECT I.U, C.V and contrast is 13.99%, 4.89% and 0.69. When it uses $^{201}Tl$ uniformity correction map, SPECT I.U, C.V and contrast is 11.37%, 4.79% and 0.78. All of data are improved about 18%, 2%, 13% The spatial resolution was no significant changes. Conclusion In the flood phantom test, Flood I.U is worsen but Flood D.U is improved. Therefore, it's uncertain that an image quality is improved with flood phantom test. On the other hand, SPECT I.U, C.V, Contrast are improved about 18%, 2%, 13% in the Jaszczak ECT phantom test. This study has limitations that we can't take all variables into account and study with two phantoms. We need think about things that it has a good effect when doctors decipher the nuclear medicine image and it's possible to improve the image quality using the uniformity correction map of other radionuclides other than $^{99m}Tc$, $^{201}Tl$ when we make other nuclear medicine examinations.

  • PDF

The Evaluation of Difference according to Image Scan Duration in PET Scan using Short Half-Lived Radionuclide (단 반감기 핵종을 이용한 PET 검사 시 영상 획득 시간에 따른 정량성 평가)

  • Hong, Gun-Chul;Cha, Eun-Sun;Kwak, In-Suk;Lee, Hyuk;Park, Hoon;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.102-107
    • /
    • 2012
  • Purpose : Because of the rapid physical decay of the short half-lived radionuclide, counting of event for image is very limited. In this reason, long scan duration is applied for more accurate quantitative analysis in the relatively low sensitive examination. The aim of this study was to evaluate the difference according to scan duration and investigate the resonable scan duration using the radionuclide of 11C and 18F in PET scan. Materials and Methods : 1994-NEMA Phantom was filled with 11C of $30.08{\pm}4.22MBq$ and 18F of $40.08{\pm}8.29MBq$ diluted with distilled water. Dynamic images were acquired 20frames/1minute and static image was acquired for 20minutes with 11C. And dynamic images were acquired 20frames/2.5minutes and static image was acquired for 50minutes with 18F. All of data were applied with same reconstruction method and time decay correction. Region of interest (ROI) was set on the image, maximum radioactivity concentration (maxRC, kBq/mL) was compared. We compared maxRC with acquired dynamic image which was summed one bye one to increase the total scan duration. Results : maxRC over time of 11C was $3.85{\pm}0.45{\sim}5.15{\pm}0.50kBq/mL$ in dynamic image, and static image was $2.15{\pm}0.26kBq/mL$. In case of 18F, the maxRC was $9.09{\pm}0.42{\sim}9.48{\pm}0.31kBq/mL$ in dynamic image and $7.24{\pm}0.14kBq/mL$ in static. In summed image of 11C, as total scan duration was increased to 5, 10, 15, 20minutes, the maxRC were $2.47{\pm}0.4$, $2.22{\pm}0.37$, $2.08{\pm}0.42$, $1.95{\pm}0.55kBq/mL$ respectively. In case of 18F, the total scan duration was increased to 12.5, 25, 37.5, and 50minutes, the maxRC were $7.89{\pm}0.27$, $7.61{\pm}0.23$, $7.36{\pm}0.21$, $7.31{\pm}0.23kBq/mL$. Conclusion : As elapsed time was increased after completion of injection, the maxRC was increased by 33% and 4% in dynamic study of 11C and 18F respectively. Also the total scan duration was increased, the maxRC was reduced by 50% and 20% in summed image of 11C and 18F respectively. The percentage difference of each result is more larger in study using relatively shorter half-lived radionuclide. It appears that the accuracy of decay correction declined not only increment of scan duration but also increment of elapsed time from a starting point of acquisition. In study using 18F, there was no big difference so it's not necessary to consider error of quantitative evaluation according to elapsed time. It's recommended to apply additional decay correction method considering decay correction the error concerning elapsed time or to set the scan duration of static image less than 5minutes corresponding 25% of half life in study using shorter half-lived radionuclide as 11C.

  • PDF

The Consideration of the Region of Interest on $^{99m}Tc$-DMSA Renal Scan in Pediatric Hydronephrosis Patients (수신증을 진단 받은 소아 환자의 DMSA 신장 검사에서 정확한 관심영역 설정에 대한 고찰)

  • NamKoong, Hyuk;Lee, Dong-Hyuk;Oh, Shin-Hyun;Cho, Seok-Won;Park, Hoon-Hee;Kim, Jung-Yul;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • Purpose: Most of diagnosis in the pediatric hydronephrosis patients have been performed $^{99m}Tc$-DMSA renal scan. Then the region of interest (ROI) is set for comparative analysis of uptake ratio in left-right kidney after acquiring the image. But if the equipment set an automatic ROI, the ROI could include expanded renal pelvis due to hydronephrosis and the uptake ratio of left-right kidney will be incorrect result. Therefore this study compared both ROIs including expanded renal pelvis and excluding renal pelvis through experiment using normal kidney phantom and expanded renal pelvis phantom and suggested setting method of improved ROI. In addition, this study have been helped by readout doctor for investigate distinction radiopharmaceutical uptake between renal cortex and remained urine by expanded renal pelvis. Materials and Methods: The both of renal phantoms were filled with water and shacked with $^{99m}TcO_4$ 111 MBq. In order to describe the expanded renal pelvis, the five latex balloon were all filled with 10 mL water and each of balloon was mixed with $^{99m}TcO_4$ 18.5, 37, 55.5, 74, 92.5 MBq. And we made phantom with fixed $^{99m}TcO_4$activity of 37 MBq and mixed water 5, 10, 15, 20, 25 mL in each balloon. The left kidney was fixed its shape and the right kidney was modified like as hydronephrosis kidney by attached the latex balloons. And the acquiring counts were 2 million. After acquisition, we compared the image of ROI with Expanded renal pelvis and the image of ROI without renal pelvis for analyzing difference in the uptake ratio of left-right kidney and for reproducibility, set the ROI 5 times in the same images. Patients were injected $^{99m}Tc$-DMSA 1.5~1.9 MBq/kg and scanned 3 to 4 hours after injection. The each of 3 skillful radio technologists performed the comparing estimation by setting ROI. To determine statistical significance between two data, SPSS (ver. 17) Wilcoxon Signed Ranks Test was used. Results: As a result of renal phantom's experiment, we compared with average of counts Background (BKG) ratios in the setting of ROI including expanded renal pelvis and setting of excluding expanded renal pelvis. Therefore, they can obtain changed counts and changed ratios. Patient also can obtain same results. In addition, the radiopharmaceutical uptake in expanded renal pelvis was come out the remained urine that couldn't descend to ureter by the help of readout doctor. Conclusion: As above results, the case of setting ROI including expanded renal pelvis was more abnormally increasing uptake ratio than the case of setting ROI excluding expanded renal pelvis in analysis the uptake ratio in left-right kidney of hydronephrosis. Because of the work convenience and prompted analysis, the automatic ROI is generally used. But in case of the hydronephrosis study, we should set the manual ROI without expanded renal pelvis for an accurate observation of the uptake ratio of left-right kidney since the radiopharmaceutical uptake in expanded renal pelvis is the remained urine.

  • PDF

A Comparative Analysis of GBEF According to Image Aquisition Method in Hepatobiliary Scan (간담도스캔의 영상수집방법에 따른 담즙배출율의 비교분석)

  • Kim, Yeong-Seon;Seo, Myeong-Deok;Lee, Wan-Kyu;Song, Jae-Beom
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.8-16
    • /
    • 2014
  • Purpose The quantitative analysis of gallbladder emptying is very important in diagnosis of motility disorder of gallbladder and in biliary physiology. The GBEF obtain the statics aquisition method or the dynamic acquisition method in two ways. The purpose of this study is to compare the GBEF value of statics acquisition method and the dynamic acquisition method. And we find the best way for calculate GBEF. Materials and Methods The quantitative hepatobiliary scan with $^{99m}Tc$-mebrofenin was performed of 27 patients. Initial images were acquired statically, for 60 min after injection of the radioactive tracer. And if the gallbladder is visualized to 60 min, performed stimulation of gallbladder (1egg, 200 mL milk). After that, started acquisition of dynamic image for 30 min. After that, image of after fatty meal of the statics method were acquired on equal terms with 60 min image. The statics GBEF was calculated using the images of before fatty meal and post fatty meal by the statics method. The dynamic GBEF was calculated using the images of time of maximum bile juice uptake ($T_{max}$) and time of minimum bile juice uptake ($T_{min}$) images from the gallbladder time-activity curve. A bile juice is secreted from gallbladder while eating a fatty meal. that is named early GBEF and that was calculated using before fatty meal image of the statics method and 1 min image of the dynamic method. Results The result saw very big difference between two according to $T_{max}$. The result, were as follows. 1) In case of less than 1 min, the dynamic mean GBEF was $40.1{\pm}21.7%$, the statics mean GBEF was $51.5{\pm}23.6%$ in 16 cases. The early mean GBEF was $14.0{\pm}29.1%$. The GBEF of statics method was higher because that include secreted bile juice while performed stimulation of gallbladder. A difference of GB counts according to acquisition method and the early bile juice counts was $17.6{\pm}14.8%$ and $13.5{\pm}15.3%$. 2) In case of exceed than 1 min, the dynamic mean GBEF was $31.0{\pm}19.7%$, the statics mean GBEF was $21.3{\pm}19.4%$ in 7 cases. The early GBEF was $-6.9{\pm}4.9%$. The GBEF of dynamic method was higher because that include concentrated bile juice to $T_{max}$. A difference of GB counts according to acquisition method and the early bile juice counts was $14.3{\pm}7.3%$ and $5.9{\pm}3.9%$. Conclusion The statics method is very easy and simple, but in case of $T_{max}$ delay, the GBEF can be lower. The dynamic method is able to calculate accurately in case of $T_{max}$ delay, but in case of $T_{max}$ is less than 1 min, the GBEF can be lower because dynamic GBEF exclude secreted bile juice while performed stimulation of gallbladder. The best way to calculate GBEF is to scan with dynamic method preferentially and to choose suitable method between the two way after conform $T_{max}$ on the T-A curve of the dynamic method.

  • PDF

The Evaluation of Reconstruction Method Using Attenuation Correction Position Shifting in 3D PET/CT (PET/CT 3D 영상에서 감쇠보정 위치 변화 방법을 이용한 영상 재구성법의 평가)

  • Hong, Gun-Chul;Park, Sun-Myung;Jung, Eun-Kyung;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.172-176
    • /
    • 2010
  • Purpose: The patients' moves occurred at PET/CT scan will cause the decline of correctness in results by resulting in inconsistency of Attenuation Correction (AC) and effecting on quantitative evaluation. This study has evaluated the utility of reconstruction method using AC position changing method when having inconsistency of AC depending on the position change of emission scan after transmission scan in obtaining PET/CT 3D image. Materials and Methods: We created 1 mL syringe injection space up to ${\pm}2$, 6, 10 cm toward x and y axis based on central point of polystyrene ($20{\times}20110$ cm) into GE Discovery STE16 equipment. After projection of syringe with $^{18}F$-FDG 5 kBq/mL, made an emission by changing the position and obtained the image by using AC depending on the position change. Reconstruction method is an iteration reconstruction method and is applied two times of iteration and 20 of subset, and for every emission data, decay correction depending on time pass is applied. Also, after setting ROI to the position of syringe, compared %Difference (%D) at each position to radioactivity concentrations (kBq/mL) and central point. Results: Radioactivity concentrations of central point of emission scan is 2.30 kBq/mL and is indicated as 1.95, 1.82 and 1.75 kBq/mL, relatively for +x axis, as 2.07, 1.75 and 1.65 kBq/mL for -x axis, as 2.07, 1.87 and 1.90 kBq/mL for +y axis and as 2.17, 1.85 and 1.67 kBq/mL for -y axis. Also, %D is yield as 15, 20, 23% for +x axis, as 9, 23, 28% for -x axis, as 12, 21, 20% for +y axis and as 8, 22, 29% for -y axis. When using AC position changing method, it is indicated as 2.00, 1.95 and 1.80 kBq/mL, relatively for +x axis, as 2.25, 2.15 and 1.90 kBq/mL for -x axis, as 2.07, 1.90 and 1.90 kBq/mL for +y axis, and as 2.10, 2.02, and 1.72 kBq/mL for -y axis. Also, %D is yield as 13, 15, 21% for +x axis, as 2, 6, 17% for -x axis, as 9, 17, 17% for +y axis, and as 8, 12, 25% for -y axis. Conclusion: When in inconsistency of AC, radioactivity concentrations for using AC position changing method increased average of 0.14, 0.03 kBq/mL at x, y axis and %D was improved 6.1, 4.2%. Also, it is indicated that the more far from the central point and the further position from the central point under the features that spatial resolution is lowered, the higher in lowering of radioactivity concentrations. However, since in actual clinic, attenuation degree increases more, it is considered that when in inconsistency, such tolerance will be increased. Therefore, at the lesion of the part where AC is not inconsistent, the tolerance of radioactivity concentrations will be reduced by applying AC position changing method.

  • PDF

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF