• Title/Summary/Keyword: Injection conditions

Search Result 1,819, Processing Time 0.031 seconds

Non-uniform Distribution of Magnetic Fluid in Multistage Magnetic Fluid Seals

  • Zhongzhong, Wang;Decai, Li;Jing, Zhou
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.299-305
    • /
    • 2017
  • Magnetic fluid, a new type of magnetic material, is a colloidal liquid constituted of nano-scale ferromagnetic particles suspended in carrier fluid. Magnetic fluid sealing is one of the most successful applications of magnetic fluid. As a new type of seal offering the advantages of no leakage, long life and high reliability, the magnetic fluid seal has been widely utilized under vacuum- and low-pressure-differential conditions. In practical applications, for improved pressure capacity, a multistage sealing structure is always used. However, in engineering applications, a uniform distribution of magnetic fluid under each tooth often cannot be achieved, which problem weakens the overall pressure capacity of the seals. In order to improve the pressure capacity of magnetic fluid seals and broaden their applications, the present study theoretically and experimentally analyzed the degree of non-uniform distribution of multistage magnetic fluid seals. A mathematical model reflecting the relationship between the pressure capacity and the distribution of magnetic fluid under a single tooth was constructed, and a formula showing the relationship between the volume of magnetic fluid and its contact width with the shaft was derived. Furthermore, the relationship of magnetic fluid volume to capacity was analyzed. Thereby, the causes of non-uniform distribution could be verified: injection of magnetic fluid; the assembly of magnetic fluid seals; the change of magnetic fluid silhouette under pressure loading; the magnetic fluid sealing mechanism of pressure transmission, and seal failure. In consideration of these causes, methods to improve the pressure capacity of magnetic fluid seals was devised (and is herein proposed).

ESD Failure Analysis of PMOS Transistors (PMOS 트랜지스터의 ESD 손상 분석)

  • Lee, Kyoung-Su;Jung, Go-Eun;Kwon, Kee-Won;Chun, Jung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.40-50
    • /
    • 2010
  • The studies of PMOS transistors in CMOS technologies are reviewed- focusing on the snapback and breakdown behavior of the parasitic PNP BJTs in high current regime. A new failure mechanism of PMOSFET devices under ESD conditions is also analyzed by investigating various I/O structures in a $0.13\;{\mu}m$ CMOS technology. Localized turn-on of the parasitic PNP transistor can be caused by localized charge injection from the adjacent diodes into the body of the PMOSFET, significantly degrading the ESD robustness of PMOSFETs. Based on 2-D device simulations the critical layout parameters affecting this problem are identified. Design guidelines for avoiding this new PMOSFET failure mode are also suggested.

An Study on the Optimization of Sub-chamber Geometry in CVC with Sub-chamber (부실을 가진 정적연소기에서 부실형상의 최적화 연구)

  • Park, Jong-Sang;Kang, Byung-Mu;Yeum, Jung-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • An experimental study was carried out to obtain the fundamental data about the effects of radical ignition on premixture combustion. A CVC(constant volume combustor) divided into the sub-chamber and the main chamber was used. Numerous narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in tile sub-chamber derives the simultaneous multi-point ignition in the main chamber. We have examined the effects of the sub-chamber volume, the diameter and number of passage holes, and the equivalence $ratio({\Phi})$ on the combustion characteristics by means of burning pressure measurement and flame visualization. In a CVC, the overall burning time including the ignition delay became very short and the maximum burning pressure was slightly increased by the radical ignition(RI) method in comparison with those by the conventional spark ignition(SI) method. Combustible lean limit by RI method is extended by ${\Phi}=0.25$ compared with that by SI method. Also, In cases of charging the number and the diameter for the fixed total cross section of the passage holes, combustion period increased significantly at a sub-chamber with a single hole, but those of the other conditions had almost a similar tendency in the sub-chamber with 4 or more holes. regardless of equivalence ratio. Therefore, it was Proved that a critical cross section exists with the number of passage holes.

  • PDF

High Altitude Simulating Test Facility Design Using Vacuum Pump System (진공펌프 시스템을 이용한 고도모의 시험장치 설계)

  • Hong, Yun Ky;Lee, Jung Min;Na, Jae Jung;Hyun, Dong Ki;Kim, Kyeong Su;Park, Sang Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1160-1164
    • /
    • 2017
  • In this research, a high altitude simulating test facility is designed using vacuum pump system composed of roots pumps and screw pumps. Air flow rate and chamber pressure are 1 kg/s and 2500 Pa, respectively. To design the test facility, experimental tests using certain pump combinations are performed for air injection of the order of hundreds of g/s. From the tests, it is found that 11 roots pumps and 33 screw pumps are required for the considered test facility. Test results are compared with theoretically estimated values. However, intake capacity theoretically estimated is found to be 20 percent larger than test results. This is thought because of higher pressure difference of roots pump for test conditions. Therefore, if more screw pumps are added for the considered pump system, it would be possible to lower the vacuum level of test chamber.

  • PDF

Quantitative Analysis of Citrate in Foods Using a Potentiometric Enzyme Biosensor (전위차법 효소 바이오센서를 이용한 식품의 구연산 정량분석)

  • Kwon, Ji-Young;Kim, Mee-Ra
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.169-175
    • /
    • 2006
  • Potentiometric biosensor using flow injection analysis system was developed to determine citrate concentration in foods. Biosensor system consisted of sample injector, peristaltic pump, enzyme reactor, carbonate ion selective solid-state electrode, reference electrode, detector, and recorder. Enzyme reactor was prepared with immobilized citrate lyase and oxaloacetate decarboxylase. Carbonate ions produced through enzyme reactions of citrate were potentiometrically detected by ion selective electrode. Optimum conditions for biosensor system were investigated. Interference effect of major sugars and organic acids was less than 5% on citrate biosensor system. Citrate concentrations in fruit juices were determined by biosensor and gas chromatography. No significant difference was observed between two analytical methods. Results indicate citrate biosensor is useful in determining citrate concentration in foods.

Bibliographic Studies on the Tetrodotoxin(TTX) (복어 독(Tetrodotoxin)에 관한 문헌적 고찰)

  • Hwang, Tae-Joon;Kwon, Gi-Rok;Choe, Ick-Seon
    • Journal of Pharmacopuncture
    • /
    • v.3 no.2
    • /
    • pp.1-25
    • /
    • 2000
  • We were trying to study the validity of Puffer fish's poison(Tetrodotoxin- TTX) to make a traditional Korean Medical treatment. The following conclusions were made after literary studies. 1. The first record of the puffer fish dates back 2000 years ago in the Chinese text Book of Mountain and Sea and other texts from the similar period. 2. Puffer fish's poison IS known as tetrodotoxin which is an amino perhydroquinazoline compound. It has a chemical formula of $C_{11}H_{17}N_3O_8$ in the hemiacetal structure and has the molecular weight of 319. 3. Tetrodotoxin (TTX) plays a role as potent neurotransmitter blocker by blocking the $Na^+$ -gate channel which hinders the influx of $Na^+$ ion into the cell. 4. Symptoms of the puffer fish poisoning ranges from blunted sense in the lips and tongue, occasional vomiting in the first degree to sudden descending of the blood pressure, apnea, and other critical conditions in the fourth degree. Intoxication of the puffer fish poison progresses at a rapid pace as death may occur after an hour and half up to eight hours in maximum. Typical death occurs after four to six hours. 5. Ways to treat the puffer fish poisoning include gastric irrigation, induce vomiting, purgation, intravenous fluid injection, and correcting electrolytic imbalance and acidosis. In cases of dyspnea, apply oxygen inhalation and conduct artificial respiration. 6. Tetrodotoxin (TTX) may be applied in treating brain disorders, ocular pain, excess pain in the large intestine and ileum, and relieving tension of the skeletal museles, neuralgia, rheumatism, arthritis, and etc. 7. In terms of Oriental medicine, the puffer fish poison has characteristics of sweet, warm, and poisonous. It's known efficacies are to tonify weakness, dispel damp, benefit the lower back, relieve hemorrhoid, kills parasites, remove edema, and so forth. And the puffer fish eggs processed with ginger are said to be effective against tuberculosis and lung cancer, thus, it's validity must be investigated and further research should be followed.

The Injection Characteristics and Environmental Effects for Grouting Materials Based on Cement (시멘트계 주입재 종류별 주입 특성 및 환경적 영향 연구)

  • 천병식;이재영;서덕동
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.159-170
    • /
    • 2003
  • In this study, the mixed design of grout with hish strength.high permeation.high durability and environmental stability as the state of the art in material field was performed. Also, the subjects of grouting, grouting effects for ground conditions, and environmental effects were analyzed. According to these results, the fundamental data will be suggested as a design of grouting in the field application. The physical, mechanical and chemical characteristics with particle shape of the grouts were analyzed. Then, the gel-time of grouts, which is essential for workability and permeation range, were controlled. Also, the laboratory model grouting tests were performed to find the characteristics of solidification, permeation and durability with grouts. The ordinary portland, slag and microcement which have been used in the construction field were evaluated fur the environmental effects. To find the leaching of $Cr^{6+}$characteristics in cement grouts, $Cr^{6+}$ leaching tests were performed for the raw materials. Also, the results of leaching test were shorn by surrounding environment. Then, the unconfined compression strength tests were performed with the homo-gel samples, and the amount of changed $Cr^{6+}$ was measured by curing solution.

A Study on Combustion and Emission Characteristics of Diesel-DME Blended Fuels in D.I Compression-Ignition Engine (직접분사식 압축착화엔진에서 Diesel-DME 혼합연료의 연소 및 배기특성에 관한 연구)

  • Jeong, Jaehoon;Lim, Ocktaeck;Jeon, Jong Up;Lee, Sangwook;Pyo, Youngduck;Lee, Youngjae;Suh, Hocheol
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.530-537
    • /
    • 2012
  • This work experimentally investigates that Diesel-DME blended fuel influences combustion characteristics and emissions (NOx, CO, HC, smoke) in a single-cylinder DI diesel engine. Diesel is used as a main fuel and DME is blended for the use of its quick evaporating characteristics. Diesel and DME are blended by the method of weight ratio. Weight ratios for Diesel and DME are 95:5 and 90:10 respectively and the both ratios have been used altogether in blended fuel. The experiments are conducted in this study single cylinder engine is equipped with common rail and injection pressure is 700 bar at 1200 rpm. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions. DME is compressed to 15 bar by using nitrogen gas thus it can be maintained the liquid phase. In this study, different system compared others paper is common rail system, also there is combustion and emission about compared DME and diesel fuel. It is expected to be utilized about blended fuel.

A CFD Analysis on Heat Transfer of High Temperature Steam through Interface with Superheater and SOEC for Hydrogen Production (SOEC에 과열기의 고온 스팀을 공급하는 Interface의 열전달에 관한 전산해석)

  • BYUN, HYUN SEUNG;HAN, DANBEE;PARK, SEONGRYONG;CHO, CHONGPYO;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.169-176
    • /
    • 2020
  • There is a growing interest in hydrogen energy utilization since an alternative energy development has been demanded due to the depletion of fossil fuels. Hydrogen is produced by the reforming reaction of natural gas and biogas, and the electrolysis of water. An solid oxide electrolyte cell (SOEC) is reversible system that generates hydrogen by electrolyzing the superheated steam or producing the electricity from a fuel cell by hydrogen. If the water can be converted into steam by waste heat from other processes it is more efficient for high-temperature electrolysis to convert steam directly. The reasons are based upon the more favorable thermodynamic and electrochemical kinetic conditions for the reaction. In the present study, steam at over 180℃ and 3.4 bars generated from a boiler were converted into superheated steam at over 700℃ and 3 bars using a cylindrical steam superheater as well as the waste heat of the exhaust gas at 900℃ from a solid refuse fuel combustor. Superheated steam at over 700℃ was then supplied to a high-temperature SOEC to increase the hydrogen production efficiency of water electrolysis. Computational fluid dynamics (CFD) analysis was conducted on the effects of the number of 90° elbow connector for piping, insulation types and insulation layers of pipe on the exit temperature using a commercial Fluent simulator. For two pre-heater injection method of steam inlet and ceramic wool insulation of 100 mm thickness, the highest inlet temperature of SOEC was 744℃ at 5.9 bar.

A Study on the Interface and Luminescent Properties of OLED using $Al_2Nq_4$ as an Emitting Layer ($Al_2Nq_4$를 발광층으로 이용한 OLED의 계면 및 발광 특성에 관한 연구)

  • Yang, Ki-Sung;Lee, Ho-Sik;Shin, Hoon-Kyu;Kim, Doo-Seok;Kim, Chung-Kyun;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.215-219
    • /
    • 2004
  • Metal-chelate derivatives have been investigated intensively as an emitting layer and recognize to have excellent electroluminescence(EL) properties. We synthesized new luminescent material, 1,4-dihydoxy-5,8-naphtaquinone $Aiq_3$ complex($Al_2Nq_4$) and investigated the electrical optical properties. OLED has potential candidates for information display with merits of thickness, low power and high efficiency. Although the OLED show a lot of advantages for information display, it has the limit of inorganic(metal)/ organic interface. In this study, the two methods are used to study the interface of metal/organic in OLED. First, we treated $O_2$ plasma on an ITO thin film by using RIE system, and analyzed the ingredient of ITO thin film according to change of the processing conditions. We used the RDS and the XPS for the ingredient analysis of the surface and bulk. We measured electrical resistivity using Four-Point-Probe and calculated sheet resistance, and ITO surface roughness was measured by using AFM. We fabricated OLED using substrate that was treated optimum ITO surface. Second, we used the buffer layer of CuPc to improve the characteristics of the interface and the hole injection in OLED. The result of the study for electrical and optical properties by using I V L T System(Flat Panel Display Analysis System), we confirmed that the electrical properties and the luminance properties were improved.

  • PDF