• Title/Summary/Keyword: Injection Velocity

Search Result 647, Processing Time 0.025 seconds

An Investigation on a Spray Characteristics of Oxygenated Fuel with a Piezo Injector Common Rail System (피에조 인젝터 커먼레일 시스템을 이용한 함산소연료의 분무특성에 관한 연구)

  • Lee, Sejun;Yang, Jiwong;Kim, Sangill;Lim, Ocktaeck
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.171-177
    • /
    • 2012
  • To understand oxygenated fuel characteristics including spray penetration length and spray angle at a real engine ambient pressure condition, DME was injected into a high pressure chamber by a piezo injector common rail system. The piezo injector common rail system was able to apply steady injection pressure, rapid response, and accurate injection quantity. Injection and ambient pressure were varied to confirm a relation with spray form. Using a direct photographing technique, development process of DME spray was captured. DME injection quantity was enlarged linearly as increasing of the injection pressure. In the high pressure chamber, when the injection pressure was enlarged the penetration length and velocity were increased due to a big momentum of fuel particle at the same ambient pressure. When ambient pressure was increased, the DME spray penetration length and velocity were decreased since the high ambient density of nitrogen was acted as a resistance. Although the ambient pressure and injection pressure were varied, each case of spray angle was almost same since the spray angle had a connection of the injector nozzle geometry.

A Study on the Spray Characteristics of Swirl Injector for Use a HCCI Engine using Entropy Analysis and PIV Technique (엔트로피 해석과 PIV를 이용한 HCCI 엔진용 스월 인젝터의 분무 특성 해석에 관한 연구)

  • 안용흠;이창희;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.39-47
    • /
    • 2004
  • The objective of this study is to analyse the spray characteristics according to the injection duration under ambient pressure condition and to investigate the relationship between vorticity and entropy for controlling diffusion process that is the most important thing during the intake stroke injection process. Therefore, the spray velocity was obtained by using the PIV method that has been an useful optical diagnostics technology, and vorticity calculated from spray velocity component with vorticity algorithm. In addition, the homogeneous diffusion rate of spray was quantified by using the entropy analysis based on the Boltzmann's statistical thermodynamics. From these method, we found that as injection duration increases, spray velocity increases and the location of vortex is moved to the downstream of spray. In the same condition, as the entropy decrease, mean vorticity increases. This means that the concentration of spray droplets caused by the increase of injection duration is more effective than the increase of momentum dissipation.

FALKNER-SKAN EQUATION FOR FLOW PAST A MOVING WEDGE WITH SUCTION OR INJECTION

  • Ishak, Anuar;Nazar, Roslinda;Pop, Ioan
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.67-83
    • /
    • 2007
  • The characteristics of steady two-dimensional laminar boundary layer flow of a viscous and incompressible fluid past a moving wedge with suction or injection are theoretically investigated. The transformed boundary layer equations are solved numerically using an implicit finite-difference scheme known as the Keller-box method. The effects of Falkner-Skan power-law parameter (m), suction/injection parameter ($f_0$) and the ratio of free stream velocity to boundary velocity parameter (${\lambda}$) are discussed in detail. The numerical results for velocity distribution and skin friction coefficient are given for several values of these parameters. Comparisons with the existing results obtained by other researchers under certain conditions are made. The critical values of $f_0$, m and ${\lambda}$ are obtained numerically and their significance on the skin friction and velocity profiles is discussed. The numerical evidence would seem to indicate the onset of reverse flow as it has been found by Riley and Weidman in 1989 for the Falkner-Skan equation for flow past an impermeable stretching boundary.

Turbulent Mixing Flow Characteristics of Solid-Cone Type Diesel Spray

  • Lee, Jeekuen;Shinjae Kang;Park, Byoungjoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1135-1143
    • /
    • 2002
  • The intermittent spray characteristics of the single-hole diesel nozzle (d$\sub$n/=0.32 mm) used in the fuel injection system of heavy-duty diesel engines were experimentally investigated. The mean velocity and turbulent characteristics of the diesel spray injected intermittently into the still ambient were measured by using a 2-D PDPA (phase Doppler particle analyzer) . The gradient of spray half-width linearly increased with time from the start of injection, and it approximated to 0.04 at the end of the injection. The axial mean velocity of the fuel spray measured along the radial direction was similar to that of the free air jet within R/b= 1.0-1.5 regardless of elapsing time, and its non-dimensional distribution corresponds to the theoretical velocity distributions suggested by Hinze in the downstream of the spray flow fields. The turbulent intensity of the axial velocity components measured along the radial direction represented the 20-30% of the U$\sub$cι/ and tended to decrease in the outer region. The turbulent intensity in the trailing edge was higher than that in the leading edge.

Multiple-Axes Velocity-Synchronizing Control of AC-Servomotor Load System for Injection Process (사출공정을 위한 AC 서보모터-부하계의 다축 속도 동기제어)

  • Jon, Yun-Son;Jung, Kwon;Choi, Jang Hoon;Ahn, Hyun;Lee, Hyeong Cheol;Kim, Young Shin;Hong, Seong Ho;Cho, Seung Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.719-726
    • /
    • 2015
  • This paper presents a velocity-synchronizing control for the multiple axes of an injection unit; based on MBS, a virtual design model has been developed for the multiple-axes servomechanism. Prior to the design of the controller, a linear plant model was derived via open-loop response simulations. To synchronize the motions of the multiple axes, a cross-type synchronizing controller was designed and combined with the PID control to accommodate any parameter mismatches among the multiple axes. From the tracking control simulations, a significant reduction of both velocity-tracking and position-tracking errors was achieved through the use of the proposed control scheme.

Atomization Improvement of a Liquid Jet with Wall Impingement and its Application to a Jet Engine Atomizer

  • Shiga, Seiichi
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.176-189
    • /
    • 2006
  • In the present study, capability of improving the liquid atomization of a high-speed liquid jet by using wall impingement is explored, and its application to a jet engine atomize. is demonstrated. Water is injected from a thin nozzle. The liquid jet impinges on a wall positioned close to the nozzle exit, forming a liquid film. The liquid film velocity and the SMD were measured with PDA and LDSA, respectively. It was shown that the SMD of the droplets was determined by the liquid film velocity and impingement angle, regardless of the injection pressure or impingement wall diameter. When the liquid film velocity was smaller than 300m/s, a smaller SMD was obtained, compared with a simple free jet. This wall impingement technique was applied to a conventional air-blasting nozzle for jet engines. A real-size air-blasting burner was installed in a test rig in which three thin holes were made to accommodate liquid injection toward the intermediate ring, as an impingement wall. The air velocity was varied from 41 to 92m/s, and the liquid injection pressure was varied from 0.5 to 7.5 MPa. Combining wall impinging pressure atomization with gas-blasting produces remarkable improvement in atomization, which is contributed by the droplets produced in the pressure atomization mode. Comparison with the previous formulation for conventional gas-blasting atomization is also made, and the effectiveness of utilizing pressure atomization with wall impingement is shown.

  • PDF

Numerical Analysis of Drag-Reducing Turbulent Flow by Polymer Injection with Reynolds Stress Model (레이놀즈응력모델을 이용한 난류의 고분자물질 첨가 저항감소현상에 대한 수치해석)

  • Ko, Kang-Hoon;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • A modified low-Reynolds-number Reynolds stress model is developed for the calculation of drag-reducing turbulent flows induced by polymer injection. The results without polymer injection are compared with the results of direct numerical simulation to ensure the validity of the basic model. In case of drag reduction, profiles of mean velocity and Reynolds stress components, in two-dimensional channel flow, obtained with a proper value of viscosity ratio are presented and discussed. Computed mean velocity profile is in very good agreement with experimental data. And, the qualitative behavior of Reynolds stress components with the viscosity ratio is also reasonable.

Filling Behavior of Polymer Melt in Micro Injection Molding for V-Grooves Pattern (V-Groove 패턴을 위한 마이크로 사출성형의 폴리머 멜트 충전 거동)

  • Kim, Moo Sun;Kim, Seung Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.291-298
    • /
    • 2014
  • This study uses two numerical approaches to analyze the filling behavior of micro patterns on micro-injection molding for V-grooves pattern which cannot be simulated with conventional CAE packages. The parametric studies have been performed to examine the fidelity of micro patterns with respect to temperature, pressure, inlet velocity and pattern location on the mold according to the boundary condition from the macro pressure and velocity data which can be obtained by conventional CAE packages. Through these numerical approaches, the filling behavior of polymer melt in micro patterns can be understood, the quality of replication can be predicted, and the V-groove pattern can be shaped uniformly during the process of injection molding.

Fuel Spray Characteristics of GDI Injector (직분식 가솔린기관 인젝터의 연료 분무 특성)

  • Kwon, Sang-Il;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.194-201
    • /
    • 2000
  • This paper is intended to analyze the macroscopic behavior and transient atomization characteristics of the high-pressure gasoline injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. Time-resolved droplet axial and radial velocity components and droplet diameter were measured at many probe positions in both axial and radial directions by a two-component phase Doppler particle analyzer (PDPA). In order to obtain the influence of fuel injection pressure, the macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 3,5 and 7 MPa of injection pressure under different surrounding pressure in the spray chamber. The results of this work show that the fuel injection pressure of gasoline injector in GDI engine has influence upon the mean droplet diameter, mean velocity of spray droplet, the spray tip penetration, and spray width under the elevated ambient pressure.

  • PDF

Reduction of NO Emission by Two-Stage Combustion (2단 연소에 의한 NO 배출 저감에 관한 연구)

  • 유현석;최정환;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.591-596
    • /
    • 1995
  • In order to investigate the reduction of NO emissions, natural gas was fueled for two-stage combustion apparatus. NO and CO emissions were described by five variables: total air ratio, primary air ratio, secondary air injection position, secondary air injection velocity, and swirl ratio. It was mainly observed that, as the primary air ratios of 0 and 0.4 NO emission decreased with increasing the secondary air injection position and secondary air injection velocity. The effect of weak swirl on NO emission was found to be insignificant.