• 제목/요약/키워드: Injection Molds

검색결과 169건 처리시간 0.024초

볼 엔드밀링에서의 공구 정렬 오차에 의한 가공면의 이론적인 평가 (Theoretical Estimation of Machined Surface Profile by Tool Alignment Errors in Ball-End Milling)

  • 신영재;박경택;이종현;강병수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.627-628
    • /
    • 2006
  • High speed milling process is emerging as an important fabrication process benefits include the ability to fabricate micro and meso-scale parts out of a greater range of materials and with more varied geometry. It also enables the creation of micro and meso-scale molds for injection molding. Factors affecting surface roughness have not been studied in depth for this process. A series of experiments has been conducted in order to begin to characterize the factors affecting surface roughness and determine the range of attainable surface roughness values for the high speed milling process. It has previously been shown that run-out creates a greater problem for the dimensional accuracy of pans created by high speed milling process. And run-out also has a more significant effect on the surface quality of milled parts. The surface roughness traces reveal large peak to valley variations. This run-out is generated by spindle dynamics and tool geometry. In order to investigate the relationship between tool alignment errors and surface roughness the scallop generating mechanism in the ball-end milling with tool alignement errors has been studied and simulated. The results indicate that tool alignment errors have no significant effects ell the dimension of scallops in for flat planes.

  • PDF

수치해석을 이용한 코그메틱용 스프레이 미립화를 위한 부품설계 및 금형 설계에 과한 연구 (A study about design of main parts and injection molds for atomization of cosmetic spray using finite element method)

  • 서형진;손창우;장영주;양우;서태일
    • Design & Manufacturing
    • /
    • 제9권2호
    • /
    • pp.25-29
    • /
    • 2015
  • This paper presented characterization of spray velocity and angle of spray nozzle systems for cosmetic products. Diameter and length of nozzle orifice were chosen as shape factors of the spray system. Spray orifice of the spray pattern is a factor influencing the quality of the product. Fluid analysis was conducted by using "Fluent" to obtain spray angle and velocity. RSM (Response Surface Method) was used to approximate the relationship between these 2 factors and spray characteristics. To evaluate the proposed method, experimental work with existing was conducted and good agreement between simulation and experimental results.

  • PDF

Fabrication of Low Carbon Steel Coated with 18%Cr-2.5%Ni-Fe Powder by Laser Cladding and Its Application on Plastic Injection Mold for Aluminum Diecasting

  • Kim, Cheol-Woo;Yoo, Hyo-Sang;Cho, Kyun-Taek;Jeon, Jae-Yeol;Choi, Se-Weon;Kim, Young-Chan
    • 한국재료학회지
    • /
    • 제31권11호
    • /
    • pp.601-607
    • /
    • 2021
  • Laser cladding a surface treatment process that grants superior characteristics such as toughness, hardness, and corrosion resistance to the surface, and rebuilds cracked molds; as such, it can be a strong tool to prolong service life of mold steel. Furthermore, compared with the other similar coating processes - thermal spray, etc., laser cladding provides superior bonding strength and precision coating on a local area. In this study, surface characteristics are studied after laser cladding of low carbon steel using 18%Cr-2.5%Ni-Fe powder (Rockit404), known for its high hardness and excellent corrosion resistance. A diode laser with wavelength of 900-1070 nm is adopted as laser source under argon atmosphere; electrical power for the laser cladding process is 5, 6, and 10 kW. Fundamental surface characteristics such as crossectional microstructure and hardness profile are observed and measured, and special evaluation, such as a soldering test with molten ALDC12 alloy, is conducted to investigate the corrosion resistance characteristics. As a result of the die-soldering test by immersion of low carbon alloy steel in ALDC12 molten metal, the clad layer's soldering thickness decreases.

분말야금으로 제작된 M2 공구강과 Cu 간 기능성 경사 복합재의 물성 평가 (Property Estimation of Functionally Graded Materials Between M2 Tool Steel and Cu Fabricated by Powder Metallurgy)

  • 정종설;신기훈
    • 대한기계학회논문집A
    • /
    • 제38권9호
    • /
    • pp.953-958
    • /
    • 2014
  • 형상적응형 냉각회로를 구비한 사출금형 및 히트 싱크를 가지는 절삭공구 (혹은 냉각 장치) 등과 같은 많은 응용 분야에서 기능성 경사 복합재(FGM)를 사용하여 필요한 강성을 약화시키지 않으면서 열전도 특성을 향상 시킬 수 있을 것으로 기대된다. 본 논문에서는 M2 공구강과 Cu 간의 FGM 히트 싱크를 가지는 절삭 공구 제작을 위한 기초연구로, M2 와 Cu 를 각각 100:0, 80:20, 60:40, 40:60, 20:80, 0:100 wt% 비율로 사전에 혼합한 금속분말을 분말야금법으로 가압성형 및 소결 제작 하였다. 각 시편의 단면을 광학현미경으로 관찰하여 소결 상태를 분석하였으며, 열전도도, 비열 및 열팽창계수 등 열전달 관련물성을 측정하고 분석하였다.

CAE을 이용한 주조방안설계 : 자동차용 부품(오일팬_BR2E) (Casting Layout Design Using CAE Simulation : Automotive Part(Oil Pan_BR2E))

  • 권홍규
    • 산업경영시스템학회지
    • /
    • 제40권1호
    • /
    • pp.35-40
    • /
    • 2017
  • A most important progress in civilization was the introduction of mass production. One of main methods for mass production is die-casting molds. Due to the high velocity of the liquid metal, aluminum die-casting is so complex where flow momentum is critical matter in the mold filling process. Actually in complex parts, it is almost impossible to calculate the exact mold filling performance with using experimental knowledge. To manufacture the lightweight automobile bodies, aluminum die-castings play a definitive role in the automotive part industry. Due to this condition in the design procedure, the simulation is becoming more important. Simulation can make a casting system optimal and also elevate the casting quality with less experiment. The most advantage of using simulation programs is the time and cost saving of the casting layout design. For a die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize the casting layout design of an automotive Oil Pan_BR2E, Computer Aided Engineering (CAE) simulation was performed with three layout designs by using the simulation software (AnyCasting). The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the filling process with three models, internal porosities caused by air entrapments were predicted and also compared with the modification of the gate system and overflows. With the solidification analysis, internal porosities occurring during the solidification process were predicted and also compared with the modified gate system.

양산을 위한 나이프 타입 절환 개폐기 금형개발 (Development of knife type switch mold & die for churns out)

  • 김대진;최성주;이상혁;이현호;김동명;조창민;이희종;오승주;김용일;이상진;문희창;장명인;우전희;김상현;황규복;최영환;김선경
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.197-202
    • /
    • 2008
  • With the growth of electrical power needs, demand of the knife-type switches in the distribution boards is increasing. We have developed a knife-type switch which is not currently produced in Korea. The switch was desinged and a comprehensive tooling for it was also accomplished. A total of two sets of injection molds and three sets of press dies were designed and manufactured. The parts for knife switches were produced using the tools. Finally, the parts were assembled together and the switch is now under the test phase.

  • PDF

혈관모사 마이크로채널이 장착된 3D 종양 세포 배양 시스템의 제작 및 검증 연구 (Fabrication and validation study of a 3D tumor cell culture system equipped with bloodvessle-mimik micro-channel)

  • 박정연;고범석;김기영;이동목;윤길상
    • Design & Manufacturing
    • /
    • 제15권2호
    • /
    • pp.11-16
    • /
    • 2021
  • Recently, three-dimensional (3D) cell culture systems, which are superior to conventional two-dimensional (2D) vascular systems that mimic the in vivo environment, are being actively studied to reproduce drug responses and cell differentiation in organisms. Conventional two-dimensional cell culture methods (scaffold-based and non-scaffold-based) have a limited cell growth rate because the culture cannot supply the culture medium as consistently as microvessels. To solve this problem, we would like to propose a 3D culture system with an environment similar to living cells by continuously supplying the culture medium to the bottom of the 3D cell support. The 3D culture system is a structure in which microvascular structures are combined under a scaffold (agar, collagen, etc.) where cells can settle and grow. First, we have manufactured molds for the formation of four types of microvessel-mimicking chips: width / height ①100 ㎛ / 100 ㎛, ②100 ㎛ / 50 ㎛, ③ 150 ㎛ / 100 ㎛, and ④ 200 ㎛ / 100 ㎛. By injection molding, four types of microfluidic chips were made with GPPS (general purpose polystyrene), and a 100㎛-thick PDMS (polydimethylsiloxane) film was attached to the top of each microfluidic chip. As a result of observing the flow of the culture medium in the microchannel, it was confirmed that when the aspect ratio (height/width) of the microchannel is 1.5 or more, the fluid flows from the inlet to the outlet without a backflow phenomenon. In addition, the culture efficiency experiments of colorectal cancer cells (SW490) were performed in a 3D culture system in which PDMS films with different pore diameters (1/25/45 ㎛) were combined on a microfluidic chip. As a result, it was found that the cell growth rate increased up to 1.3 times and the cell death rate decreased by 71% as a result of the 3D culture system having a hole membrane with a diameter of 10 ㎛ or more compared to the conventional commercial. Based on the results of this study, it is possible to expand and build various 3D cell culture systems that can maximize cell culture efficiency by cell type by adjusting the shape of the microchannel, the size of the film hole, and the flow rate of the inlet.

중국인과 일본인에 대한 가변형 치과 인상용 트레이의 적합성에 관한 연구 (A Study on the Fitness of Adjustable Dental Impression Trays on the Chinese and Japanese)

  • 강한중;이진한;최종인;이인섭;동진근
    • 대한치과보철학회지
    • /
    • 제46권2호
    • /
    • pp.175-184
    • /
    • 2008
  • 연구목적: 본 연구는 가변형 트레이 개발의 일환으로 그 시제품을 제작하고 비가역성 수성 콜로이드 인상재를 사용하여 중국인과 일본인에서 인상채득 시 트레이의 구강 내 적합성를 알아보고자 하였다. 연구재료 및 방법: 가변형 트레이는 한국 성인 악궁의 크기 분석결과를 기본으로 하여 설계하였으며, 먼저 CAD-CAM 작업을 통하여 견본 모형을 제작한 후, 이를 똑같이 복제한 실리콘 간이금형을 만들었다. 그리고 이 금형에 polyurethane을 주입하여 다수의 시제품을 완성하였다. 시제품을 이용하여 중국인으로는 상해 제2의과대학교 구강의학원 학생 60명 (남자 30명, 여자 30명)을 대상으로 하였고, 일본인으로는 일본 구마모토 고등학교 졸업생 60명 (남자 30명, 여자 30명)을 대상으로 인상채득을 실시하고, 측정부위별로 인상체의 두께와 길이를 측정한 후 통계처리를 하여 그 적합성을 평가하였다. 결과: 1. 중국인과 일본인 모두 스탑과 경사면에 의해 트레이의 폭이 적절히 조절되어 대체적으로 3-6mm의 균일한 인상체의 두께를 얻을 수 있었다. 2. 중국인의 상악 트레이에서는 전치 순측 변연부에서 두께가 6.2mm, 견치 순측 변연부에서 두께가 5.9mm, 구개부 중앙은 10.5 mm, 구개부 후방은 9.7mm 높이로 비교적 인상체의 두께가 크게 측정되었다. 3. 중국인의 하악 트레이에서는 제1, 2소구치 접촉점 설측 변연부에서 인상체의 길이가 8.9mm, 전치 설측 변연부에서 7.2mm로 길게 나타났으며, 견치 순측 6.8mm, 소구치 순측 7.0mm로 인상체의 두께가 크게 측정되었다. 4. 일본인의 상악 트레이에서는 전치 순측 변연부에서 두께가 7.4mm, 견치 순측 변연부에서 7.7mm, 구개부 중앙은 9.1mm 높이로 인상체의 두께가 비교적 크게 측정되었다. 5. 일본인의 하악 트레이에서는 견치 순측 7.4mm, 제1, 2소구치 접촉점 순측 변연부 8.4mm로 인상체의 두께가 크게 측정되었다. 결론: 본 가변형 치과 인상용 트레이는 한국인 모형 계측치를 바탕으로 설계되어 한국인에서 적합성이 우수하며, 본 실험의 결과 중국인과 일본인에서도 적합성이 좋아 본 트레이를 범용하여 쉽고 정확한 인상채득을 할 수 있을 것이다.

Novel Resectable Myocardial Model Using Hybrid Three-Dimensional Printing and Silicone Molding for Mock Myectomy for Apical Hypertrophic Cardiomyopathy

  • Wooil Kim;Minje Lim;You Joung Jang;Hyun Jung Koo;Joon-Won Kang;Sung-Ho Jung;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • 제22권7호
    • /
    • pp.1054-1065
    • /
    • 2021
  • Objective: We implemented a novel resectable myocardial model for mock myectomy using a hybrid method of three-dimensional (3D) printing and silicone molding for patients with apical hypertrophic cardiomyopathy (ApHCM). Materials and Methods: From January 2019 through May 2020, 3D models from three patients with ApHCM were generated using the end-diastolic cardiac CT phase image. After computer-aided designing of measures to prevent structural deformation during silicone injection into molding, 3D printing was performed to reproduce anatomic details and molds for the left ventricular (LV) myocardial mass. We compared the myocardial thickness of each cardiac segment and the LV myocardial mass and cavity volumes between the myocardial model images and cardiac CT images. The surgeon performed mock surgery, and we compared the volume and weight of the resected silicone and myocardium. Results: During the mock surgery, the surgeon could determine an ideal site for the incision and the optimal extent of myocardial resection. The mean differences in the measured myocardial thickness of the model (0.3, 1.0, 6.9, and 7.3 mm in the basal, midventricular, apical segments, and apex, respectively) and volume of the LV myocardial mass and chamber (36.9 mL and 14.8 mL, 2.9 mL and -9.4 mL, and 6.0 mL and -3.0 mL in basal, mid-ventricular and apical segments, respectively) were consistent with cardiac CT. The volume and weight of the resected silicone were similar to those of the resected myocardium (6 mL [6.2 g] of silicone and 5 mL [5.3 g] of the myocardium in patient 2; 12 mL [12.5 g] of silicone and 11.2 mL [11.8 g] of the myocardium in patient 3). Conclusion: Our 3D model created using hybrid 3D printing and silicone molding may be useful for determining the extent of surgery and planning surgery guided by a rehearsal platform for ApHCM.