• Title/Summary/Keyword: Injection Molding CAE

Search Result 203, Processing Time 0.023 seconds

CAE Analysis of Powder Injection Molding Process for Dental Scaler Mold (치과용 스케일러 금형의 분말사출성형 CAE 해석설계)

  • Ko Y. B.;Park H. P.;Chung S. T.;Rhee B. O.;Hwang C. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.570-576
    • /
    • 2005
  • Powder Injection Molding(PIM) has recently been recognized as an advanced manufacturing technology for low-cost mass production of metal or ceramic parts of complicated geometry With this regards, design technology of dental scaler tip PIM mold, which has complex shape and small core pin (diameter=0.6mm), with the help of computer-aided analysis of powder injection molding process was developed. Computer-aided analysis for dental scaler tip mold was implemented by finite element method with non-Newtonian fluid, modified Cross model viscosity, PvT data of powder/binder mixture. Compter-aided analysis results, such as filling pattern, weldline formation, air vent position prediction were compared with experimental result, and eventually have been shown good agreement. The core pin (diameter=0.6mm) deflection analysis of dental scaler tip PIM mold during PIM filling process was also investigated before mold fabrication.

A multi-field CAE analysis for die turning injection application of reservoir fluid tank (리저버 탱크의 Die Turning Injection 적용을 위한 Multi-field CAE 해석)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.66-71
    • /
    • 2021
  • In this study, die turning injection(DTI) mold design for manufacturing reservoir fluid tanks used for cooling in-vehicle batteries, inverters, and motors was conducted based on multi-field CAE. Part design, performance evaluation, and mold design of the reservoir fluid tank was performed. The frequency response characteristics through modal and harmonic response analysis to satisfy the automotive performance test items for the designed part were examined. Analysis of re-melting characteristics and structural analysis of the driving part for designing the rotating die of the DTI mold were performed. Part design was possible when the natural frequency performance value of 32Hz or higher was satisfied through finite element analysis, and the temperature distribution and deformation characteristics of the part after injection molding were found through the first injection molding analysis. In addition, it can be seen that the temperature change of the primary part greatly influences the re-melting characteristics during the secondary injection. The minimum force for driving the turning die of the designed mold was calculated through structural analysis. Hydraulic system design was possible. Finally, a precise and efficient DTI mold design for the reservoir fluid tank was possible through presented multi-field CAE process.

A Study on the Runner and Gate Consequence of Manufacture Double Shot Molding using CAE (CAE 를 이용한 이중사출 제품의 러너 및 게이트 영향에 대한 연구)

  • Kim, O.R.;Cha, B.S.;Lee, S.Y.;Kim, Y.G.;Woo, C.K.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.160-165
    • /
    • 2009
  • A Study on Effects of the Runner and the Gate of double shot injection molded Parts using CAE Double shot injection molding can inject two different materials or two different colors in the same mold in a injection molding process. Double shot injection molded parts can be characterized that the base part maintains strength and specified part can inject soft-material. It can reduce the production cost by single automatic operations. In this paper, we designed double shot injection mold for automobile emote control To inject secondary part, this part is used as an insert after external appearance of product is injected. CAE analysis was progressed gate location and runner size as variables. The analysis result is reflected in mold design process. As a result, it could solve problems which are generated in the conventional mold. Additionally, cost can be downed by reducing runner weight. As well as it could omit painting process because the surface of finished product is improved through new mold.

Development of Asymmetric Plastic Fan Product (비대칭형 플라스틱 팬 제품 개발)

  • Yon, Kyu-Hyun;Kim, Hyung-Kook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.53-59
    • /
    • 2009
  • The analysis of injection molding process by CAE is widely used in development of plastic products. That comes from the fact that CAE analysis can reduce trial and error based on optimized design. On this study, by use of MOLDFLOW, the causes of product defects were found and solved by trade-off study. CAE analysis includes Flow-Cool-Warpage Analyses and finally a new mold-die design with better product quality was suggested. On injection molding of round-shaped plastic fan, new mold-die system with 4-tunnel gates located on the edge of a fan disc shows better quality rather than pin-point gate located on the center of a disc. That was effective in terms of flow mark removal and flatness improvement of the product.

  • PDF

A Study on the Battery Case Injection Molding by CAE Analysis (CAE 해석을 이용한 배터리 케이스 사출성형에 관한 연구)

  • Lee, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • Battery cases have been made of polypropylene and its warpage is relatively large due to the crystalline characteristic of polypropylene. In this study, the battery case when the injection mold used to improve the Gate by simplifying the process of production cost savings and focus on improving the quality of molding CAE analysis was carried out. The result could be produced in plastic and products of the imbalance in the flow and deformation and to predict reliability of the product will contribute to reduced scrap.

Applications of Numerical Analysis Technology in Powder Injection Molding Process (분말사출 성형공정에서의 수치해석기술의 응용)

  • ;;;;Sunder V. Atre;Randall M. German
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.261-266
    • /
    • 2002
  • CAE technology is an integrated tool including all aspects such as powder, binder system, mixing, injection molding, debinding and sintering. Therefore, CAE technology is considered as one of core technologies for PIM industry in the future. Recently many researchers are developing not only CAE software itself but also application procedures of CAE software. In this study, the applications for CAE technology in PIM industry are presented including feedstock mixing effect, several cases of troubleshooting and optimization procedure.

Optimization of feed system of base mold for washing machine using CAE (사출성형 CAE를 이용한 세탁기용 Base 성형용 금형의 유동 시스템 최적화)

  • Yoo, Min-ji;Kim, Kyung-A;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The position of the gate is one of the important factors for optimal injection molding. This is because inappropriate gate positions cannot fill the cavity uniformly, which can lead to defects such as contraction. In this study, CAE was performed on hot runner injection molding of the washing machine base and plasticity was compared by changing gate position from existing gate position. A total of two alternatives have been applied to compare the plasticity of the washing machine base according to its optimal gate position. The gate position of the improved molds and the gate position of the current mold is analyzed by injection molding analysis. The results of the fill time, the pressure at V/P switchover, clamping force, and deflection were compared. In washing machine base injection molding, the deflection was reduced by about 3.76% in the improved mold 2. In improved mold 1, the fill time during injection molding was reduced by 3.32% to enable uniform charging, and the clamping force was reduced by 31.24%. We have confirmed that the position of the gate can change the charging pressure and the clamping force and affect the quality and cost savings of the molded product.

Design for Injection Molding Process of Part Shoes by Design of Experiment (실험계획법을 이용한 신발용 사출성형품의 사출성형 공정설계)

  • Lee J. K.;Ye S. D.;O H. O.;Min B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.423-426
    • /
    • 2005
  • The injection molding process has applied to a variety of fields by a development of various plastic resins. Recently, this process has been extending to a field of parts of shoes. In this study, the injection mold of shank which is a one of the parts of shoes has been designed. The position of gate and the injection procedure have been optimized by a simulation using the CAE software and an analysis using the DOE. As a result, the improved injection mold of shank has been manufactured in a short time. Appling the CAE and the DOE at the process of the injection mold design eventually lead an increase in the productivity and the quality of parts.

  • PDF

Reduction of Birefringence and Weld-Line using Over-Flow in Injection Compression Molding for Optic Lens (광학렌즈의 사출압축성형에서 오버플로우를 이용한 웰드라인과 복굴절 저감)

  • Kong, Ki-Hwan;Lee, Jin-Hyo;Kang, Byung-Ook;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.95-100
    • /
    • 2018
  • This study has focused on the weld-line and birefringence reduction of a plastic optic lens using over and CAE analysis in injection compression molding. A concave lens, which has a thin thickness in the center and a large difference in thickness between the center and the periphery, often causes weld-line defects during injection molding. CAE analysis has been applied to optimize the overflow design in order to reduce the weld-line defects and the polarization defects. To reduce the weld line and birefringence defects, overflow design and application using CAE analysis show that the measured birefringence values of the specimens before the overflow application were 46.8nm and 36.9nm, and the values after the over-flow application were 13.6nm and 14.0nm. From the experimental results, it is confirmed that birefringence is greatly improved when overflow is applied.

Development of Lightweight Molding CAE Data for Efficient Exchange (사출성형 해석 결과 데이터의 효율적 공유를 위한 경량데이터 개발)

  • Park, Ji-Hun;Park, Byoung-Keon;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.344-350
    • /
    • 2011
  • In injection molding industries, CAE analyses are generally used to find out problems predicted during the process of manufacturing. The results of CAE analyses consist of much in formation such as meshes and stress, so that the size of data is pretty large. To reduce the size of the data and to make it easy to share, the CAE result to JT translator is proposed in this paper. The translator consists of three modules to translate CAE result to JT format; Extracting module gets ASCII data of product shape and the result values of CAE analysis. Sorting module and mapping module make an element data set and JT file with the data extracted from Extracting module respectively. To the JT files, engineers are able to append product properties and their comments, so that they can share the whole history of the analysis process. In addition, our case study shows that the size of JT format is reduced by almost 90% of its original data format.