• Title/Summary/Keyword: Injection Molding

Search Result 1,555, Processing Time 0.03 seconds

Effect of Coffee Grounds on Mechanical Behavior of Poly Propylene Composites

  • Vinitsa Chanthavong;M. N. Prabhakar;Dong-Woo Lee;Jung-Il Song
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.264-269
    • /
    • 2023
  • Spent coffee grounds (SCG) are a ubiquitous byproduct of coffee consumption, representing a significant waste management challenge, as well as an untapped resource for economic development and sustainability. Improper disposal of SCG can result in environmental problems such as methane emissions and leachate production. This study aims to investigate the physicochemical properties of SCG and their potential as a reinforcement material in polypropylene (PP) to fabricate an eco-friendly composite via extrusion and injection molding, with SCG filler ratios ranging from 5-20%. To evaluate the effect of SCG on the morphological and mechanical properties of the bio- composite, thermogravimetric analysis, SEM, tensile, flexural, and impact tests were conducted. The results demonstrated that the addition of SCG lead to a slight increase in brittleness of the composite but did not significantly affect its mechanical properties. Impressively, the presence of a significant organic component in SCG contributed to the enhanced thermal performance of PP/SCG composites. This improvement was evident in terms of increased thermal stability, delayed onset of degradation, and higher maximum degradation temperature as compared to pure PP. These findings suggest that SCG has potential as a filler material for PP composites, with the ability to enhance the material's properties without compromising overall performance.

Development and performance evaluation of a low-cost custom-made extensional rheometer (저비용 수제 연신레오미터 개발 및 성능 평가)

  • Sihyun Kim;Hanbyeol Pak;Jeong-Hyun Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.110-118
    • /
    • 2023
  • Characterizing the extensional rheological properties of non-Newtonian fluids is crucial in many industrial processes, such as inkjet printing, injection molding, and fiber engineering. However, educational institutions and research laboratories with budget constraints have limited access to an expensive commercial extensional rheometer. In this study, we developed a custom-made extensional rheometer using a CO2 laser cutting machine and 3D printer. Furthermore, we utilized a smartphone with a low-cost microscopic lens for achieving a high spatial resolution of images. The aqueous polyethylene-oxide (PEO) solutions and a Boger fluid were prepared to characterize their extensional properties. A transition from a visco-capillary to an elasto-capillary regime was observed clearly through the developed rheometer. The extensional relaxation time and viscosity of the aqueous PEO solutions with a zero-shear viscosity of over 300 mPa·s could be quantified in the elasto-capillary regime. The extensional properties of the solutions with relatively small zero shear viscosity could be calculated using a smartphone's slow-motion feature with increasing temporal resolution of the images.

Rubber O-ring defect detection using adaptive binarization, Convex Hull preprocessing, and convolutional neural network learning method (적응형 이진화와 Convex Hull 전처리 및 합성곱 신경망 학습 방법을 적용한 고무 오링 불량 판별)

  • Seong, Eun-San;Kim, Hyun-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.623-625
    • /
    • 2021
  • Rubber o-rings are produced by conventional injection molding methods. In this case, products that are not normally molded are determined to be defective. However, if images acquired during image-based reading are read as original, there is a problem of poor accuracy. We have thus learned from convolutional neural networks using adaptive binarization and Convex Hull algorithms by extracting only rubber oring parts from the original images through pre-processing. During the test process, it was confirmed that the defect detection performance of the learning method applied pre-processing was better than the standard suggested.

  • PDF

Facile Fabrication of Animal-Specific Positioning Molds For Multi-modality Molecular Imaging (다중 분자 영상을 위한 간편한 동물 특이적 자세 고정틀의 제작)

  • Park, Jeong-Chan;Oh, Ji-Eun;Woo, Seung-Tae;Kwak, Won-Jung;Lee, Jeong-Eun;Kim, Kyeong-Min;An, Gwang-Il;Choi, Tae-Hyun;Cheon, Gi-Jeong;Chang, Young-Min;Lee, Sang-Woo;Ahn, Byeong-Cheol;Lee, Jae-Tae;Yoo, Jeong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.5
    • /
    • pp.401-409
    • /
    • 2008
  • Purpose: Recently multi-modal imaging system has become widely adopted in molecular imaging. We tried to fabricate animal-specific positioning molds for PET/MR fusion imaging using easily available molding clay and rapid foam. The animal-specific positioning molds provide immobilization and reproducible positioning of small animal. Herein, we have compared fiber-based molding clay with rapid foam in fabricating the molds of experimental animal. Materials and Methods: The round bottomed-acrylic frame, which fitted into microPET gantry, was prepared at first. The experimental mice was anesthetized and placed on the mold for positioning. Rapid foam and fiber-based clay were used to fabricate the mold. In case of both rapid foam and the clay, the experimental animal needs to be pushed down smoothly into the mold for positioning. However, after the mouse was removed, the fabricated clay needed to be dried completely at $60^{\circ}C$ in oven overnight for hardening. Four sealed pipet tips containing $[^{18}F]FDG$ solution were used as fiduciary markers. After injection of $[^{18}F]FDG$ via tail vein, microPET scanning was performed. Successively, MRI scanning was followed in the same animal. Results: Animal-specific positioning molds were fabricated using rapid foam and fiber-based molding clay for multimodality imaging. Functional and anatomical images were obtained with microPET and MRI, respectively. The fused PET/MR images were obtained using freely available AMIDE program. Conclusion: Animal-specific molds were successfully prepared using easily available rapid foam, molding clay and disposable pipet tips. Thanks to animal-specific molds, fusion images of PET and MR were co-registered with negligible misalignment.

Development of Key Technologies for Large Area Forming of Micro Pattern (대면적 미세 성형공정 원천기술 개발)

  • Choi, Doo-Sun;Yoo, Yeong-Eun;Yoon, Jae-Sung;Je, Tae-Jin;Park, Si-Hwan;Lee, Woo-Il;Kim, Bong-Gi;Jeong, Eun-Jeong;Kim, Jin-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.777-782
    • /
    • 2011
  • Micro features on the surface are well-known to have significant effects on optical or mechanical properties such as the optical interference, reflectance at the surface, contact angle, interfacial friction, etc. These surface micro features are increasingly employed to enhance the functionality of the applications in various application areas such as optical components for LCD or solar panel. Diverse surface features have been proposed and some of them are showing excellent efficiency or functionality, especially in optical applications. Most applications employing the micro features need manufacturing process for mass production and the injection molding and roll-to-roll forming, which are typical processes for mass production adopting polymeric materials, may be also preferred for micro patterned plastic product. Since the functionality or efficiency of the surface structures generally depends on the shape and the size of the structure itself or the array of the structures on the surface, it would be very important to replicate the features very precisely as being designed during the molding the micro pattern applications. In this paper, a series of research activities is introduced for roll-to-roll forming of micro patterned film including filling of patterns with UV curable resin, demolding of surface structures from the roll tool, control of surface energy and cure shrinkage of resin and dispose time and intensity of the UV light for curing of UV curable resin.

An Improved Manufacturing Method of p-Dicyclopentadiene (DCPD) using Tungsten Type Catalyst in Air Condition (대기 조건에서 경화가 가능한 텅스텐계 p-DCPD의 개선된 성형 방법)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.216-222
    • /
    • 2016
  • Ring-opening metathesis polymerization of p-dicyclopentadiene (DCPD) can be performed using the tungsten type catalyst. This reaction usually progresses in nitrogen condition, because the catalysts are extremely sensitive in air condition. To solve this problem, DCPD resin with tungsten (W) was cured using hot press after stirring of DCPD A and B liquid in air condition. Mechanical properties of DCPD were improved by reducing microvoid occurrence successfully by using hot press method. It might be because hot press could provide sufficient press on DCPD specimen. Addition of catalyst was not effective for the curing of resin in a short time. During polymerization, pressure and temperature had a great influence on the mechanical properties of DCPD.

The Effect of Interfacial Properties and RTM Process of Composites with Different Cross-linking Density by Molecular Weight of Hardener (경화제의 분자량에 의한 가교밀도 차이에 따른 복합재료의 계면 물성 및 RTM 성형성에 미치는 영향)

  • Park, Ha-Seung;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.169-174
    • /
    • 2017
  • Demand of glass fiber reinforced composites (GFRC) increased with developing aircraft and defense industries using resin transfer molding (RTM) process to produce complex product. In this research, wetting, interfacial, and mechanical properties were evaluated with different Cross-linking Density by Molecular Weight of Hardener. Epoxy resin as matrices was used bisphenol-A type and amine-type hardeners with different molecular weight. Specimens were manufactured via RTM and wetting property of resin and glass fiber (GF) mat was evaluated to viscosity of epoxy and injection time of epoxy matrix. Mechanical property of GFRC was determined via flexural strength whereas interfacial properties were determined by interlaminar shear strength (ILSS) and interfacial shear strength (IFSS). The difference in mechanical property depends upon the fiber weight fraction (wt %) of GFRC by RTM as well as the different Molecular Weight of Hardener.

The effect analysis of birefringence of plastic f$\heta$ Iens on the beam diameter (플라스틱 f$\heta$렌즈의 복굴절이 결상빔경에 미치는 영향분석)

  • 임천석
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.2
    • /
    • pp.73-79
    • /
    • 2000
  • We measure a beam diameter of scan and sub-scan direction of LSD (Laser Scanning Urnt) which uses $fheta$ lens produced by injecLion molding method as a scanning lens. While the measured beam diameter in scan direction, which is $62muextrm{m}$ to $68\mu\textrm{m}$, shows similar size comparing to the design beam diameter, the sub-scan beam diameter shows sIzable beam diameter deviation as much as 37 11m ranging from $78\mu\textrm{m}$ to $115\mu\textrm{m}$. Injection molding lens has the surface figure error due to the shrinkage III the cooling time and the internal distortion (birefringence) due to the uneven cooling conditIOn so that these bring about wavefront aberration (i.e., the enlargement of beam size), and are eventually expre~sed as the deterioration of the pdnting image. In this paper. we first measure and analyze beam diameter, birefringence (polanzation ratio), and asphedcal figure error of mIens in order to know the principle cause of the beam diameter deviation in sub-scan directIOn. And Lhen. through the analysis of a designed depth of focus and a calculated field curvature (imaging position of the optical axis directIon) using the above figure elTor data, we know Lhat the birefringence IS the main factor of sizable beam diameter deVIation in sub-scan direction. ction.

  • PDF

A Research on the Manufacturing Process Improvement of High-Precision Parts for Precision Guided Missile (유도무기용 소형 정밀부품 제조공법 개선에 관한 연구)

  • Kim, Kyu-Young;Seo, Jung-Hwa;Kim, Kyoung-Rok;Kim, Bo-Ram
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • The manufacturing processes of high-precision parts for PGM (Precision Guided Missiles) have not been improved for decades; they still depend on machining or high-precision casting. These processes have an advantage when making small amounts of high-reliability parts in the usual case of a PGM system. In the case of a PGM system, however, which has been made for striking an extensive area, requires hundreds of bomblet units that require mass productivity. In addition, in the case of a part that is very difficult to machine, mass productivity and quality cannot be satisfied at the same time. In particular, cost reduction is an essential precondition to strengthening the export competitiveness of Korean defense articles. This study examined whether the MIM process is appropriate for manufacturing high-precision parts that require mass productivity. The optimized MIM process condition was determined after carrying out fundamental research. Comparisons of the quality of prototype parts with original parts and a functional test of a fuse that had been made with MIM parts highlighted the application possibility of the MIM process.

Development of a cavity pressure measuring device and estimation of viscosity functions of various polymer composites (사출성형 금형 캐비티 내압 측정장치 개발 및 이를 이용한 새로운 복합재료의 점도 측정)

  • Kim, Yong-Hyeon;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.877-887
    • /
    • 2015
  • We have proposed a new method for estimating the viscosity of the composite. In this paper, we have developed a device for measuring the injection mold cavity pressure. This makes it possible to verify the accuracy of the viscosity in CAE D/B in real time by measuring the melt pressure in the mold, and comparing this with the simulated pressure from the CAE analysis. Materials used in this study is a PP(Polypropylene), PP/LGF30%(Polypropylene/long glass fiber 50% composite) and PA66/LGF50%(Polyamide 6,6/long glass fiber 50% composite). The viscosity data for PP and PP long fiber composite have already been built, but the one for PA66 long-fiber composite does not exist because it is a newly developed material. Thus we obtained the viscosity curve of PA66/LGF50% by this system. Then, the viscosity curves from conventional viscometer were also compared with the viscosity obtained by the our method. And, we proved the accuracy of the CAE data of PP. In case of PP/LGF50% which is highly viscous and complex material, we improved the existing CAE data.because there was a difference between the measuring data and the CAE data.