• Title/Summary/Keyword: Injection Molded Gear

Search Result 13, Processing Time 0.033 seconds

Strength Estimation of Injection Molded Plastic Stepped Spur Gear (사출 성형 플라스틱 단붙이 기어의 강도평가)

  • Chong, Tae-Hyong;Moon, Chang-Ki;Ha, Young-Wook
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.17-23
    • /
    • 2006
  • The strength estimation is carried out for injection molded plastic stepped gear. The stepped gear is considered as a plate model which is fixed by two edges and freed on the other sides. The stress of common normal gear is calculated by Lewis formula which can be derived quite simply from the equation fur the stress at the root of a cantilever beam. Stress ratio(step factor) between the common normal gear and stepped gear is proposed for the ratio of the bending stress of normal gear and that of stepped gear. This study proposes the step factor added in Dupont equation which is used for strength estimation of injection molded plastic stepped gear.

Cavity Design Method for Injection-Molded Spur Gears

  • Kim, Choong-Hyun;Lee, Sung-Chul;Ahn, Hyo-Sok;Chong, Tae-Hyong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.65-71
    • /
    • 2000
  • Mold cavities of gears should be made larger than the product specification since plastics shrink when changing from a molten to a solid state. For injection molded spur gears, two design methods for the compensation of shrinkage are widely used. One is the module correction method and the other is the pressure angle correction method. Both methods are based on the assumption that shrinkage occurs toward the center of a molded gear. This paper deals with the shrinkage rate and proposes a method of designing gear cavity derived from the measured shrinkage rates which govern the outside diameter, the tooth depth and the tooth thickness of a molded gear. The proposed method imposes no restriction on the shrinkage direction and provides a cavity with all of the fundamental gear design parameters.

  • PDF

A Study on Design Analysis for Injection-Molded Gear (CAE기술응용 사출성형기어 설계에 관한 연구)

  • 허용정
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.11a
    • /
    • pp.135-138
    • /
    • 2001
  • The design and manufacture of injection molded Sear with desired Properties is a costly process dominated by empiricism including the interactive modification of prototype toolings. In this paper, an interactive computer-based design system for injection molded gear is developed in order to realize the concept of rational design for the productivity and quality of mold making of a small plastic gear. The knowledge-based synthesis system being developed in this paper combines a rule-based expert system with analytical process simulation programs in a synergistical manner. Quick and logical evaluations on the design of injection molded gear can be made on the scientific analysis and the accumulated experts' knowledge.

Injection Molded Microcellular Plastic Gear (II) - Characteristics of the Counter Pressurized Microcellular Plastic Gear - (초미세발포 플라스틱 기어에 관한 연구 (II) - 카운터프레셔 초미세발포 플라스틱 기어의 특성 -)

  • Ha Young Wook;Takahashi Hideo;Chong Tae Hyong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.655-662
    • /
    • 2005
  • This paper investigates the improvement of accuracy and fatigue life of the developed counter pressurized microcellular gears of polyacetal. It is shown that the fatigue life and operational characteristics of the counter pressurized microcellular gears are more improved than conventional injection molded plastic gears by the dynamic gear durability test. For the cases of test sea.5. conventional injection molded sea.5(SGea.) and counter pressurized microcellular gears(CGear) are manufactured. Durability test is performed on both conventional lnjection molded gears and counter pressurized microcellular gears. Accuracy variation and operational characteristics on fatigue life, wear and tooth surface temperature of CGear and Scear are compared and represented. Operational characteristics of the proposed counter pressurized microcellular gears show a good result in this research. The durability limit of counter pressurized microcellular gears is also obtained, and represented by a function of unit load as well as by a function off-factor.

Injection Molded Microcellular Plastic Gear (I) - Process Design for the Microcellular Plastic Gear - (초미세발포 플라스틱 기어에 관한 연구 (I) - 초미세발포 플라스틱 기어의 공정설계 -)

  • Ha Young Wook;Chong Tae Hyong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.647-654
    • /
    • 2005
  • This research Proposes a Process design of injection molded microcellular plastic gears for enhancing the fatigue strength/durability and accuracy of the gears applying thermodynamic instability to microcellular foaming process. To develop the injection molded plastic gears by way of microceliular process, it is absolutely necessary the following two process design. The first is microcellular forming process for enhancing the strength/durability of plastic gears. To be microcellular process succeeded, based on the microcellular principle, mechanical apparatus is designed where nucleation and cell growth are to be generated renewably. The second is the counter pressure process which is mainly fur improving the tooth surface roughness and the accuracy of microcellular gears. For the former process, screw, nozzle and gas equipment are newly designed, and for the latter, counter pressure by nitrogen gas is intentionally brought about into mold cavity when injecting plastic gears. Based on the proposed process design, using gear mold, experiments of injection molding show that, in internal space of plastic gears, microcellular nuclear cells less than 5 lim in diameter have been generated homogeneously via electron microscope photos.

Development of Engineering Plastic Gear Based on Injection Molding Process (사출성형공정에 의한 엔지니어링 플라스틱 기어 개발)

  • Min, Byeong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.71-78
    • /
    • 1999
  • The application range of injection molded parts is expanding by the development of engineering plastics with good mechanical properties. Plastic gears are specially used as automotive parts due to an excellent performance in the characteristics of a strength vs. weight, and the study of injection molding process of plastic gear using Nylon66 is performed in this study. Filling, packing and cooling analyses were done by using the simulation software like Moldflow, and a mold was designed by following the simulation results. Pin-point gates with three points were taken to satisfy the design guides like a full-shot, and lower clamping force and uniform shrinkage. Characteristics of shrinkage of molded gear and temperature difference between cavity and core sides of a mold were shown.

  • PDF

Strength Estimation of Injection Molded Plastic Stepped Spur Gear (사출 성형 플라스틱 단붙이 기어의 강도평가)

  • 정태형;문창기;하영욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.92-97
    • /
    • 2004
  • The aim of this study is to estimate the strength of injection molded plastic stepped gear. We considered stepped gear as plate model which are fixed by two edges. While, on the other sides are free. Normal gear is calculated by Lewis formula which can be derived quite simply from the equation for the stress at the root of a cantilever beam. Stress ratio(step factor) is represented for the ratio of the bending stress of normal and the bending stress of stepped gear, and it is plotted by face width factor. This study is propose the step factor added in Dupont equation which are strength estimation of step gear

  • PDF

Cavity Design for Injection Molded Gears by the Compensation Method of Design Parameters (설계인자 보정방법에 의한 사출성형기어의 캐비티 설계)

  • Lee, Sung-Chul;Kim, Choong-Hyun;Kwon, Oh-Kwan;Huh, Yong-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3142-3151
    • /
    • 1996
  • As plastics shrink when changing from a molten to a solid state, mold cavities must by made larger than the product specification, In making molded gears, the teeth in the cavity must be carefully compensated for shrinkage so that the teeth of gears will have the correct profile. Two compensation methods are widely used in the cavity design. One is the compensation of a module and the other is the modification of a pressure angle and profile shifting coefficient. These methods, however, do not provide a gear cavity with all disign parameters for gears and several parameters are determined by experience. In this paper, the new design technique, namely the compensation method of design parameters, was proposed , which is based on the three kinds of shrinkage rates obtained from the measuring data of the prototype of molded gears. Using the shrinkage rates in the tip circle, tooth heigth and tooth thickness, we calculate the whole design parameters of a gear cavity. Thus, the gear cavity is considered as a complete gear with the compensated module, pressure angle, profile shifting coefficient, clearance coefficient and back lash amount so that the formula of gears can be applied to the cavity design effectively. Experimental results show that more precision molded gears can be made by using the proposed design method.

A Study on Volumetric Shrinkage of Injection Molded Part by Neural Network (신경회로망을 이용한 사출성형품의 체적수축률에 관한 연구)

  • Min, Byeong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.224-233
    • /
    • 1999
  • The quality of injection molded parts is affected by the variables such as materials, design variables of part and mold, molding machine, and processing conditions. It is difficult to consider all the variables at the same time to predict the quality. In this paper neural network was applied to analyze the relationship between processing conditions and volumetric shrinkage of part. Engineering plastic gear was used for the study, and the learning data was extracted by the simulation software like Moldflow. Results of neural network was good agreement with simulation results. Nonlinear regression model was formulated using the test data of 3,125 obtained from neural network, Optimal processing conditions were calculated to minimize the volumetric shrinkage of molded part by the application of RQP(Recursive Quadratic Programming) algorithm.

  • PDF

A study on the filling imbalances in hot-runner mold for internal gear based on injection molding (내측 기어 성형용 핫러너 금형에서의 충전불균형에 관한 연구)

  • No, Byung-Soo;Jea, Duck-Gun;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.1-5
    • /
    • 2008
  • Plastic parts are molded for the purpose of mass production in injection molding. Therefore designer is usually designing molds that has geometrically balanced hot runner lay-out for filling balance at cavities. Although, mold is manufactured with geometrically balanced runner lay-out, there are actually filling imbalances in cavities. These filling imbalances phenomenon are caused by complicated interaction between melt and mold. In this paper, filling imbalances for internal gear based on injection molding in hot-runner mold were investigated by CAE and injection molding experiences.

  • PDF