• Title/Summary/Keyword: Injection Machine

Search Result 361, Processing Time 0.021 seconds

Measurement Uncertainty Estimation of Injection Temperature in Injection Molding Machine (사출성형기의 사출온도에 대한 측정 불확도 추정)

  • Jung, Hyun-Suk;Yoo, Joong-Hak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.145-149
    • /
    • 2013
  • The performance of injection molding machine's control system, such as reproducibility, repeatability, etc, is widely studied nowadays. Since screw stroke, injection cylinder body pressure and barrel temperature are the most important terms of injection unit, interval linearity and repeatability to each parameter are analyzed here. Barrel temperature is analyzed according to the repeatability of the thermocouple at $150^{\circ}C$, $210^{\circ}C$, $300^{\circ}C$ using a precise oven. The result temperature is within ${\pm}0.5^{\circ}C$ Through the reliability evaluation of the most important terms of injection unit, the method of evaluating the linearity and repeatability is proposed and verified.

Developed Compact Injection Molding Machine for Desktop (탁상용 소형 사출 성형기 개발)

  • Lee, Byung-Ho;Shin, Dong-Hwa
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.257-263
    • /
    • 2018
  • It is a small injection molding machine for table top considering the material heating mechanism and the design and structure stability by securing the mechanism that compresses the inside of the material heating tube by using the electric actuator and by providing space between the body and the material heating tube to reduce heat loss Develop body. An electric actuator suitable for applying pressure to the inside of a material heating tube is a mechanical system composed of a rigid structure. Since a large force is repeatedly applied to the electric actuator and the push rod, the interaction between the moving parts and the dynamic Maximum stress through analysis and prediction of fatigue life of critical parts The pushrod reflects the structural analysis results of the electric actuator and the push rod, and pushes the inside of the material heating tube by the push rod to inject the molten material from the nozzle into the mold. The pushrod operates by the operation of the electric actuator. The material heated by the coil heater is ejected through the nozzle by the pressure of the material heating tube, and the material heating tube and the nozzle are also lowered at the same time as the push rod is lowered, so that the material is closely adhered to the mold. We want to study the completion of the injection.

Optimization of feed system of base mold for washing machine using CAE (사출성형 CAE를 이용한 세탁기용 Base 성형용 금형의 유동 시스템 최적화)

  • Yoo, Min-ji;Kim, Kyung-A;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The position of the gate is one of the important factors for optimal injection molding. This is because inappropriate gate positions cannot fill the cavity uniformly, which can lead to defects such as contraction. In this study, CAE was performed on hot runner injection molding of the washing machine base and plasticity was compared by changing gate position from existing gate position. A total of two alternatives have been applied to compare the plasticity of the washing machine base according to its optimal gate position. The gate position of the improved molds and the gate position of the current mold is analyzed by injection molding analysis. The results of the fill time, the pressure at V/P switchover, clamping force, and deflection were compared. In washing machine base injection molding, the deflection was reduced by about 3.76% in the improved mold 2. In improved mold 1, the fill time during injection molding was reduced by 3.32% to enable uniform charging, and the clamping force was reduced by 31.24%. We have confirmed that the position of the gate can change the charging pressure and the clamping force and affect the quality and cost savings of the molded product.

Numerical Study on the Behavior Characteristics of a Screw in Injection Molding Machine (사출기 스크류의 변형거동 특성에 관한 수치해석 연구)

  • 김청균;조승현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.30-37
    • /
    • 2002
  • Single flighted screw injection technology is the most cost effective method for the production of film, sheet, pipe and the fundamental step in other processes including blow molding and injection molding. The temperature of polymer melts and injection pressure play a very important role in the injection molding machine. Thermal distortion and displacement of a screw by temperature difference and injection pressure difference ratio cause a friction and thermoelastic wear by metal-to-metal contact between the screw and the cylinder. In this paper we analyzed thermal distortions of a screw as functions of temperature distribution and pressure profiles by finite element analysis.

A Study on the Energy Saving and the Reproducibility of highly-efficient Injection Molding Machine (고효율 사출성형기의 에너지 절감 및 성형 재현성 연구)

  • Jeong, C.;Kim, J.S.;Yoon, K.H.;Ahn, H.J.;Hwang, C.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.418-421
    • /
    • 2008
  • Because of steep rise of international energy cost in recent years high efficiency has been emphasized in energy policy. As far as injection molding machine is concerned, hybrid method using hydraulic and electric systems became the key to this energy saving. the energy saving and molding reproducibility of hybrid injection molding process were shown experimentally, power consumption of hybrid machine is 38% as compared with that of hydraulic machine. Furthermore, the molding reproducibility showed between two methods.

  • PDF

Machine Learning Model for Reduction Deformation of Plastic Motor Housing for Automobiles

  • Seong-Yeol Han
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2024
  • The purpose of this paper is to introduce a fusion method that combines the design of experiments (DOE) and machine learning to optimize the bias of plastic products. The study focuses on the plastic motor housing used in automobiles, which is manufactured through plastic injection molding. Achieving optimal molding for the motor housing involves the optimization of various molding conditions, including injection pressure, injection time, holding pressure, mold temperature, and cooling time. Failure to optimize these conditions can lead to increased product deformation. To minimize the deformation of the motor housing, the widely used Taguchi method, which is one of the design of experiment techniques, was employed to identify the injection molding conditions that affect deformation. Machine learning was then applied to various models based on the identified molding conditions. Among the models, the Random Forest model emerged as the most effective in predicting deformation amounts. The validity of the Random Forest model was also confirmed through verification. The verification results demonstrated the excellent prediction accuracy of the trained Random Forest model. By utilizing the validated model, molding conditions that minimize deformation were determined. Implementation of these optimal molding conditions led to a reduction of approximately 5.3% in deformation compared to the conditions before optimization. It is noteworthy that all injection molding outcomes presented in this paper were obtained through robust injection molding simulations, ensuring both research objectivity and speed.

Prediction of Weight of Spiral Molding Using Injection Molding Analysis and Machine Learning (사출성형 CAE와 머신러닝을 이용한 스파이럴 성형품의 중량 예측)

  • Bum-Soo Kim;Seong-Yeol Han
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.27-32
    • /
    • 2023
  • In this paper, we intend to predict the mass of the spiral using CAE and machine learning. First, We generated 125 data for the experiment through a complete factor design of 3 factors and 5 levels. Next, the data were derived by performing a molding analysis through CAE, and the machine learning process was performed using a machine learning tool. To select the optimal model among the models learned using the learning data, accuracy was evaluated using RMSE. The evaluation results confirmed that the Support Vector Machine had a good predictive performance. To evaluate the predictive performance of the predictive model, We randomly generated 10 non-overlapping data within the existing injection molding condition level. We compared the CAE and support vector machine results by applying random data. As a result, good performance was confirmed with a MAPE value of 0.48%.

  • PDF

Injection Unit Precision Inspection according to Control Method of Injection Molding Machine (사출성형기의 제어방식에 따른 사출장치 정밀도 검사)

  • Jung, Hyun-Suk;Yoo, Joong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.414-419
    • /
    • 2016
  • A study of a precision test according to the control method of an injection molding machine was carried out. The effects of the screw stroke, holding pressure, melt temperature on both the hydraulic and electric injection molding machine were examined. In addition, hypothesis testing was performed to determine the deviation of the data obtained in the experiments. The conclusions obtained in this study were as follows. Significant deviations in the screw stroke, melt temperature and holding pressure occurred in that order. The hydraulic type showed significantly more variation between the products compared to the electric type. In addition, using a mini tab from the statistics program, a hypothesis was proposed and the P value of the injection stroke, holding pressure, melting temperature injection stroke and melting temperature had adopted a null hypothesis ($H_0$). The holding pressure, which showed mutual differences, adopted an alternative hypothesis ($H_1$).

Developement of Simulation Model for Analysis of Hydraulic Systems in Injection Molding Machine (1) (사출성형기 유압시스템 분석용 시뮬레이션 모델 개발 (1))

  • 신성철;박영진;김진영;이강걸
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.4
    • /
    • pp.25-32
    • /
    • 2002
  • Hydraulic systems of injection molding machine are modelled and simulated with AMESim which is a commercial program. Detail models of hydraulic components are simulated and simulation results are evaluated with maker's test results in catalog. Sub system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like cylinder speed, cylinder displacement, pressure, flow rates at each node and so on. Total circuit model is also made and analyzed. The prediction made by simulation will be used design of hydraulic systems of injection molding machine.

  • PDF

Study of transcription ability of optic polymer and Micro-grooving machining of ultra-precision injection molding moulds (초정밀 사출성형 금형의 마이크로 홈가공과 전사성)

  • Kwak T.S.;Ohmori H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.623-624
    • /
    • 2005
  • Micro injection molding is a branch of micro system technology and has been under development for the mass manufacture of micro parts. Enhanced technological products like micro optical devices are entering the market. This paper presents fundamental research on the injection molding technique in micro fabrication. In order to successful manufacturing of micro plastic parts, it is necessary to research for development of micro-injection machine, machining of micro mold, decision of optimum injection conditions and the research for polymer material. Therefore in this study, in order to machining of micro mold, a mold core with microscopic V-shaped groove was tooled by ultra-precise tooling machine. The transcription experiments with a polymer, PMMA resin on the surface of core with Ni plating were carried out and surface profile of injected parts was measured with AFM.

  • PDF