• 제목/요약/키워드: Injection Flow Rate

검색결과 713건 처리시간 0.022초

Fluidic Valve의 유동 특성에 관한 연구 (A Study on the Flow Characteristics of Fluidic Valve)

  • 유성연;지명석;김기형;김만웅
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.425-432
    • /
    • 2001
  • Fluidic valve is adopted in APR1400 to control passively the flow rate of cooling water from the safety injection tank. It is necessary to establish independent evaluation guideline for the flow characteristics of fluidic valve in order to secure safety. Three dimensional numerical model for fluidic valve is developed and numerical results are compared with experimental data obtained at KAERI in order to verify numerical simulation. Also influence of the grid number and the turbulence model were investigated. In addition, variation of flow rate is investigated at various elapsed times after valve operating, and flow characteristics are analyzed at low and high flow rate conditions, respectively.

  • PDF

초음속 유동장 내 이중 수직분사의 특성에 관한 연구 I-혼합특성 (Characteristics of Dual Transverse Injection in Supersonic Flow Fields I-Mixing Characteristics)

  • 신훈범;이상현
    • 한국항공우주학회지
    • /
    • 제30권6호
    • /
    • pp.53-60
    • /
    • 2002
  • 단일 분사 노즐을 갖는 연소기 내부의 혼합과정에 대한 이해를 바탕으로 연료 분사 노즐을 이중으로 갖는 연소기의 혼합과정에 대한 수치연구를 수행하였다. 수치연구를 위하여 3차원 Navier-Stokes 방정식과 k-$\omega$ SST난류 모델을 이용하여 연료 이중 분사 유동을 모사하였다. 이중 분사구 사이의 거리 변화에 따른 혼합특성의 변화를 살펴보기 위하여 파라메터 연구를 수행하였다. 연료 이중 수직분사에서 두 분사기의 유동 및 혼합특성은 서로 상당히 다른 경향을 보이며, 후방 분사기의 유동 및 혼합특성은 전방 분사류의 영향을 받아 더 크게 팽창하고 침투거리가 증가하는 것으로 나타났다. 어떤 특정 거리가 되기 전까지 분사기 사이의 거리가 증가할수록 전체적인 혼합률과 침투거리가 증가하는 등 혼합특성이 개선되지만, 특정 거리보다 크게되면 오히려 혼합특성이 악화되는 것으로 나타났다. 이는 이중분사기에서 최적인 혼합특성을 위한 두 분사기 사이의 거리가 존재함을 의미하는 것으로 판단된다.

Internal Flow Dynamics and Regression Rate in Hybrid Rocket Combustion

  • Lee, Changjin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권4호
    • /
    • pp.507-514
    • /
    • 2012
  • The present study is the analyses of what has been attempted and what was understood in terms of improving the regression rate and enlarging the basic understanding of internal flow dynamics. The first part is mainly intended to assess the role of helical grain configuration in the regression rate inside the hybrid rocket motor. To improve the regression rate, a combination of swirl (which is an active method) and helical grain (which is a passive method) was adopted. The second part is devoted to the internal flow dynamics of hybrid rocket combustion. A large eddy simulation was also performed with an objective of understanding the origin of isolated surface roughness patterns seen in several recent experiments. Several turbulent statistics and correlations indicate that the wall injection drastically changes the characteristics of the near-wall turbulence. Contours of instantaneous streamwise velocity in the plane close to the wall clearly show that the structural feature has been significantly altered by the application of wall injection, which is reminiscent of the isolated roughness patterns found in several experiments.

HALL EFFECTS ON HYDROMAGNETIC NATURAL CONVECTION FLOW IN A VERTICAL MICRO-POROUS-CHANNEL WITH INJECTION/SUCTION

  • BHASKAR, P.;VENKATESWARLU, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제24권1호
    • /
    • pp.103-119
    • /
    • 2020
  • In this work, the hydromagnetic and thermal characteristics of natural convection flow in a vertical parallel plate micro-porous-channel with suction/injection is analytically studied in the presence of Hall current by taking the temperature jump and the velocity slip at the wall into account. The governing equations, exhibiting the physics of the flow formation are displayed and the exact analytical solutions have been obtained for momentum and energy equations under relevant boundary conditions. The impact of distinct admissible parameters such as Hartmann number, Hall current parameter, permeability parameter, suction/injection parameter, fluid wall interaction parameter, Knudsen number and wall-ambient temperature ratio on the flow formation is discussed with the aid of line graphs. In particular, as rarefaction parameter on the micro-porous-channel surfaces increases, the fluid velocity increases and the volume flow rate decreases for injection/suction.

IGCC 발전용 가스화기에서 증기 주입량이 합성가스 생산량에 미치는 영향 (Effect of the Steam Flow Rate on Syngas Productivity in IGCC Gasifier for a Power Generation)

  • 금경남;유호선
    • 플랜트 저널
    • /
    • 제15권3호
    • /
    • pp.29-34
    • /
    • 2019
  • 본 연구에서는 정격 합성가스 생산량이 54.33 kg/s인 태안 IGCC 발전소 가스화기를 대상으로 가스화기 산소부하가 일정한 운전조건에서 석탄 공급량을 고정하고 증기 주입량을 변화시킬 때 증기 주입량이 합성가스 생산량에 미치는 영향을 알아보고자 하였다. 증기 주입량은 가스화기 운전지침서의 증기 주입량 0.28 kg/s 및 0.32 kg/s 까지 변동하며 운전하였고, 최대 합성가스 평균 생산량은 가스화기 산소부하 80 % 및 90 %에서 증기 주입량 0.14 kg/s 및 0.15 kg/s 일 때 측정되었다. 이 연구를 통해 증기 주입량 조정만으로 합성가스 생산량이 변화 하고, 증기 주입량 증가시 합성가스 생산량은 증가하다가 다시 감소하는 특성을 확인 할 수 있었다. 추가 석탄 공급 없이 증기 주입만으로 합성가스 생산량을 증가 시킬 수 있고, 석탄의 성분 및 조성에 따라 가스화기의 합성가스 생산량이 다른 특성을 가지고 있는 것으로 사료되는 바, 시험에서 사용된 카보원 석탄을 사용하는 가스화기는 산소부하 80% ~ 90 %에서 운전시 석탄 버너 당 증기 주입량을 약 0.14 kg/s 에서 운전하는 것이 추천된다.

LP가스연료 액상공급시스템 특성연구 (An investigation of LPG fuel supply method for Liquid phase LPG injection system)

  • 김창업;오승묵;최수진;강건용
    • 한국분무공학회지
    • /
    • 제9권2호
    • /
    • pp.18-23
    • /
    • 2004
  • An experimental studies of conventional gasoline fuel pump were carried out to obtain fundamental data fur liquid phase LPG injection(LPLi) system. A regenerative type and a roller-vane type of pumps were investigated in various operational condition. The experiments were performed to obtain flow rate of LPG fuel as a function of pressure differences and temperatures. The regenerative pump had too low flow rate at some experimental conditions to use this pump system for LPLi fuel supply system. On the other hand, the roller-vane type pump can be applied to the system only if its check valve is modified. Cavitation might occur in this system which can result in system noise, flow rate variation, and pump durability problem. To solve these problems the system is needed to increase $NPSH_{re}$(required net positive suction head).

  • PDF

액상 LPG 인젝터의 유량 모델 개발 (Development of Flow Rate Model of a Liquid Phase LPG Injector)

  • 조성우;민경덕
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.22-28
    • /
    • 2003
  • Flash boiling mechanism in the injector interferes with fine fuel metering in a liquid phase LPG injection engine. This study presents a mathematical model to precisely predict an injection quantity. A calibration procedure of injection quantity, which is very prompt and precise in measuring, is developed using a gas analyzer. According to this procedure, injection quantity can be obtained under various fuel compositions, temperatures and injection pressures. The release pressure of liquid phase LPG is estimated based on these experimental data. Although the release pressure is much lower than the saturation pressure, it is linearly proportional to the saturation pressure.

Hole drilling angle이 가솔린 직접 분사식 인젝터의 내부 유동에 미치는 영향 (Effects of Hole Drilling Angle on Internal Flow of Gasoline Direct Injection Injector)

  • 김휘준;박성욱
    • 한국분무공학회지
    • /
    • 제26권4호
    • /
    • pp.197-203
    • /
    • 2021
  • In gasoline direct injection injectors, cavitation can be generated inside the hole because of their high injection pressure. In this paper, the effects of cavitation development in injector were investigated depending on the various hole drilling angles were investigated by a numerical method. In order to verify the internal flow model, injection rate and injection quantity of individual holes were measured. The BOSCH long tube method was used to measure the injection rate. As a result, even if the hole diameters were the same, the discharge coefficient differed by up to 10% depending on the hole angle. Moreover, if the hole drilling angle became greater than 30°, the area coefficient and the discharge coefficient decreased as the nozzle outlet was blocked due to cavitation.

루프소기형태의 2행정기관에서 분사압력 및 분사각도에 따른 분무특성 연구 (Effects of Injection Pressure and Injection Angle on Spray Characteristics in Loop Scavenged Type 2-stroke Engines)

  • 채수;유홍선
    • 한국자동차공학회논문집
    • /
    • 제4권1호
    • /
    • pp.165-176
    • /
    • 1996
  • The flow field and spray characteristics for loop scavenged type 2stroke engine having pancake shape was numerically computed using KIVA-Ⅱ code. The cylinder has 1intake port, 2side intake ports and 1exhaust port with induced flow angle 25 deg. In engine calculation, the chop techniques is used to strip or add planes of cells across the mesh adjacent to the TDC and the BDC(ports parts) for preventing the demand of exceed time during the computation, providing a control on cell height in the squish region. The modified turbulent model including the consideration of the compressibility effect due to the compression and expansion of piston was also used. The case of 25 deg.(injection angle) which is opposite to scavenging flow direction shows better the distribution of droplets and the evaporation rate of droplets compared to other cases(0 deg., - 25 deg.). When injection pressure was increased, the spray tip penetration became longer. When injection pressure was increased, the interaction between the upward gas velocity and spray droplets strongly cause. Thus the breakup of droplets is strongly occurred and the evaporation rate of droplets was found to be better.

  • PDF

Pickup 렌즈의 사출조건이 복굴절 및 굴절율에 미치는 영향에 관한 연구 (A Study on Influence of Parameters and Characteristics in the Injection Process on the Birefringence and Refractive Index for Pickup Lens)

  • 이승준;현동훈
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.21-28
    • /
    • 2007
  • Injection molding process factors such as molding temperature, injection pressure, flow rate and flow velocity, must be controlled properly in filling and packing phases in the injection molding process. In this study, effects of these factors on the injection molding were investigated through the flow analysis for birefringence and refractive index for pickup lens. This paper presents the birefringence and refractive index reduced with increasing the holding pressure and also the holding pressure time. And there are interaction with birefringence and fill time in the injection process. The optimal conditions through DOE are validated by using injection molding analysis.