• 제목/요약/키워드: Injecting pressure

검색결과 116건 처리시간 0.02초

PDPA를 이용한 도장의 최적 조건에 관한 실험 (Experimental Study for the Optimum Conditions of Painting Using Phase Doppler Particle Analyzer)

  • 황승식;김종철;하옥남;전운학;정회원
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.1-20
    • /
    • 1997
  • The automotive industry as the major industry of the nation has affected both society and economy since the automobile was invented, and the main technique that help to performance improvement of the automobile has been developed. But, the painting technique lags behind the main technique of the automobile because that was neglected. Specially, we can say that in case of the painting technique of the automobile of our nation is so weak situation. After we changed the injecting pressure, the composition ratio (paint, hardener, thinner) and the injecting flow rate from spray-gun by PDPA, we studied the character of the injecting velocity and droplet size, and found the fittest condition. So, we got the following result to help mending paint technique of automobile surface. We could know the following fact from the experiment result. When it does mending paint of automobile, there is most suitable that to inject the paint as injecting pressure 200∼300 kPa and to inject the ratio of paint 10 : 1 : 1 when the fluid adjective knob valve spay-gun is open full.

  • PDF

황철석으로 조성된 성토구조체의 중화제 주입을 위한 최적 방안 제안 (Optimal Method for Injection of Neutralizer into Embankment Structure Composed of Pyrite Rocks)

  • 송영석;윤중만
    • 한국지반신소재학회논문집
    • /
    • 제22권4호
    • /
    • pp.73-82
    • /
    • 2023
  • 본 연구에서는 황철석 암버럭으로 시공된 성토체를 대상으로 산성배수 발생을 억제하기 위하여 중화제를 주입할 경우 최적의 주입방안을 제시하고자 한다. 성토체 내에 중화제 주입으로 인한 침투효과를 수치해석으로 검토하기 위하여 유한요소해석을 수행하였다. 수치해석을 위하여 중화제 주입관의 직경을 50mm로 선정하고 주입관의 간격을 1-4m, 주입압을 100-220kPa로 변화시키면서 침투해석을 수행하였다. 해석결과에 따르면 중화제의 주입관 간격 1.0m 및 주입압 130kPa인 경우와 주입관 간격 2.0m 및 주입압 160kPa인 경우가 상대적으로 낮은 주입압에서 성토체 전체의 포화 도달시간이 빠른 것으로 나타났다. 그리고, 성토체 전체의 포화를 위한 중화제 주입관의 간격은 3m인 경우 130kPa에서 190kPa까지 다양한 주입압을 적용할 수 있으며, 성토체의 포화 도달시간은 주입압에 상관없이 유사한 것으로 나타났다. 따라서 경제성을 고려한 최적의 중화제 주입조건으로 주입관의 간격은 3.0m, 주입압은 130kPa로 선정하였다.

발플라스트 레진 주입 시 발생되는 의치상의 두께변화에 관한 연구 (Research for Thickness Change of Denture Base in Flask when Injecting Valplast Flexible Partial Denture Resin)

  • 장완영;김부섭;정인성
    • 대한치과기공학회지
    • /
    • 제30권2호
    • /
    • pp.47-56
    • /
    • 2008
  • This is a research for thickness change of denture base according to the shape of sprue & investment position of denture base in flask when injecting polyamid base resin for flexible partial denture as a part of study for Valplast among the flexible partial denture with a nylon base. It has been introduced several kinds of flexible partial denture product with a nylon base, but Valplast is the most widely used product among them. Valplast has been the most generally used material today since developed in 1950s in the United States as a material for flexible partial denture. Valplast is much more aesthetic than general metal-acrylic partial denture due to its translucent pink color and biocompatibility in terms of material characteristic. It keeps its flexibility for a long time after production, imposes a less burden on the teeth used as abutment, and it can be easily insert and remove due to its particular suppleness. Moreover, it is felt like real teeth more than metal-acrylic partial denture when being put in and takes alveolar bone under good protection since it receives occlusal force equally under the denture base. The most outstanding feature of Valplast is flexibility. The extent of its flexibility is determined by width & thickness of denture base. Considering general working procedure of Valplast, it can be seen that the thickness of denture base formed out of wax is increasing by the pressure while injecting resin. This research is to decide and test on the thickness increasing of Valplast by injecting pressure and the hypothesis upon that and is to prepare the basis estimating the increasing extent of thickness of denture base on the basis of the test result. In this test, it is expected occlusal malposition & thickness increasing of denture base by injecting pressure according to 4 kinds of test data which are to select 3 types of sprue method settling the forefront position at which the test material of fixed standard can be invested and to position the test material at the rearmost part keeping the minimum distance to set sprue. For 4 kinds of injecting test by investment position & sprue type, 20 test materials, 5 for each test were produced and a pressure of 1,180Kg was given with automatic injector of air cylinder type. The results are as follows: 1. For the amount of thickness increasing of denture base by investment position, the thickness of front investment is less increasing than the one of rear investment. 2. For the amount of thickness increasing of denture base by sprue type, the thickness of straight decompression sprue type which can absorb the injecting pressure after injecting polyamide base resin is less increasing than the other sprue types.

  • PDF

BEHAVIOR OF LIQUID LPG SPRAY INJECTING FROM A SINGLE HOLE NOZZLE

  • PARK K.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.215-219
    • /
    • 2005
  • Liquefied petroleum gas (LPG) has been used as motor fuel due to its low emissions and low cost. A liquid direct injection system into a cylinder was suggested as a next generation system to maximize a fuel economy as well as a power. This study addresses the analysis of the LPG spray injecting from single hole injector. Two different test conditions are given, which are a fully developed spray case with various injection pressures and a developing spray case with ambient pressure variation. The LPG spray photographs are compared with the sprays of gasoline and diesel fuel at the same conditions, and the spray angles and penetration lengths are also compared, and then the spray behavior is analyzed. The LPG spray photos show that the dispersion characteristic depends very sensitively on the ambient pressure soon after injection. The spray angle is very wide in a low ambient pressure condition until the saturated pressure, but the angle is quickly reduced at the condition over the pressure. However, the down stream of the LPG spray shows much wider dispersion and less penetration than those of gasoline and diesel sprays regardless ambient pressure condition.

연소실 압력변동과 2차 연료분사가 화염안정화와 NOx 배출에 미치는 영향 (Influence of changing combustor pressure and secondary fuel injection on flame stabilization and NOx emission)

  • 김종률;최경민;김덕줄
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.128-133
    • /
    • 2006
  • Influence of changing combustor pressure on flame stabilization and nitrogen oxide (NOx) emission in the swirl-stabilized flame with secondary fuel injection was investigated. The combustor pressure was controlled by suction at combustor exit. Pressure index ($P{\ast}=P_{abs}/P_{atm}$), where $P_{abs}$ and $P_{atm}$ indicated the absolute pressure and atmosphere pressure, was controlled in the range of $0.7{\sim}1.3$ for each equivalence ratio conditions. The flammable limits of swirl flames were largely influenced by changing combustor pressure and they showed different tendency compared with laminar flames. Emission index showed maximum value near atmospheric condition and decreased with decreasing pressure index for overall equivalence ratio conditions. R.m.s of pressure fluctuations also showed similar tendency with nitric oxide emission. By injecting secondary fuel into flame zone, the flammable limits were extended significantly. Emission index of nitric oxide and r.m.s. of pressure fluctuations were also controlled by injecting secondary fuel. The swirl flames were somewhat lifted by secondary fuel with high momentum, hence low nitric oxide emission. This NOx reduction technology is applicable to industrial furnaces and air conditioning system by adopting secondary fuel injection.

  • PDF

손상된 콘크리트 구조물에 에폭시수지를 이용한 보수·보강효과에 대한 연구 (A Study on the Repair and Strengthening Effects of Epoxy Grout for the Damaged Concrete Structure)

  • 신성우;조태관
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제1권1호
    • /
    • pp.125-132
    • /
    • 1997
  • This study was intended to investigate the effects of epoxy grout on compressive strength for damaged concrete structures. For this purpose, concrete molds were manufactured and tested for compressive strength at 28 days after water curing. Two kinds of Korea-made and one Japan-made epoxy grouts were injected into the broken concrete molds with the automatic low-pressure injecting method or the hand injecting method.

  • PDF

고압분사 경유-물 혼합연료의 연소특성 (A Study on Combustion Characteristics of Diesel-water Emulsion with High Pressure Injection)

  • 정대용;이종태
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1435-1441
    • /
    • 2003
  • Combustion characteristics on diesel-water emulsion are analyzed in high pressure injection for several variables such as water content, injection pressure and injection timing. As a fact of well-known, maximum combustion pressure was decreased and ignition delay was elongated in accordance with increasing of water content. But these characteristics were enhanced with increase of injection pressure to high pressure. It was shown that combustion of neat diesel in case of injecting with 600bar is similar to that of 20 % diesel-water emulsion was injected at 1200 bar.

사출금형을 이용한 비구면 렌즈의 제조기술에 관한 연구 (A Study on the Manufacturing Technology of the Aspheric Lens using Injection Molding)

  • 최헌종;이석우;강은구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.76-83
    • /
    • 2002
  • The injection molding of the plastic optics is basically same as the conventional molding except it requires very intricate control of all the molding processing parameters. In the plastic optics, the problem of injection molding is the shrinkage. The shrinkage must be removed and predicted. This shrinkage is becoming more important than any other problems in precision molding because it can affect the focal length of a lens or the total performance of the optical system. This study focused on avoiding the shrinkage that the mold design allows for the optics. In making mold, the surface accuracy(P-V) of the lower and lower mold are $0.201{\mu}m\;and\;0.434{\mu}m$ respectively. A surface roughness(Ra) is below $0.02{\mu}m$ due to selecting the appropriate tools and using the injection molding machine in high degree. In injection molding of the plastic lens, mold temperature, resine temperature and injecting pressure are important process parameters. Injection molding process is carried out according to varying mold temperature and injecting pressure. As a result P-V(peak to valley) of spheric lens is $3.478{\mu}m$ and that of aspheric lens is $1.786{\mu}m$.

  • PDF

DME/Diesel 듀얼 퓨얼 엔진의 연소 및 배출 특성에 관한 연구 (Research on the Combustion and Emission Characteristics of the DME/Diesel Dual-fuel Engine)

  • 임옥택;표영덕;이영재
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.29-34
    • /
    • 2011
  • This study investigates the potential of DME/Diesel dual fuel engine for reducing emissions with same power. Dual fuel engine controls the combustion using two different fuels, DME and diesel with different auto-ignition timings. In the previous work, the caracteristics of combustion and emissions under single cylinder engine and ignition is done by compression ignition. Pre-mixture is formed by injecting low-pressure DME into an intake manifold and high-pressure fuel (diesel or DME) is injected directly into the cylinder. Both direct diesel injection and port fuel injection reduced the significant amount of Smoke, CO and NOx in the homogeneous charge compression ignition engine due to present of oxygen in DME. In addition, when injecting DME directly in cylinder with port DME injection, there is no changes in emissions and energy consumption rate even operated by homogeneous charge compression ignition.

과산화수소의 가압침투에 의한 다공성 발포체에 관한 연구 (A Study on Bloating of Porous Foam by Pressure Infiltration with H2O2)

  • 김귀식;정지현
    • 동력기계공학회지
    • /
    • 제20권5호
    • /
    • pp.86-91
    • /
    • 2016
  • This paper is concerned chiefly with the method of porous foam manufacture using basalt stone powder sludge. The hydrogen peroxide($H_2O_2$) of bloating agent has lots of problems to manufacture porous lightweight aggregate due to fast reaction rate with cement or calcium hydroxide($Ca(OH)_2$). The $H_2O_2$ injecting method using nozzle for manufacturing porous lightweight aggregate is proposed, in this study. This method is to inject $H_2O_2$ at the pressure of 10 MPa on upper side of slurry mixing materials such as stone powder sludge and quick-lime(CaO) by injector. The specimen was dried in furnace at $100^{\circ}C$ for 1 hour and cured at ambient temperature for 30 days. We analyzed the characteristics including specific gravity and water absorption. The experiments were found that the porous foam has low specific gravity, high water absorption and uniform distribution of porous more than manufactured foam by general bloating methods.