• Title/Summary/Keyword: Initial stress condition

Search Result 253, Processing Time 0.025 seconds

A Study on the Thermal Crack Control of the In-Ground LNG Storage Tank as Super Massive Structures (지하식 LNG 저장탱크 구조물의 온도균열 제어에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.773-780
    • /
    • 2011
  • In this study, thermal stress analysis are carried out considering material properties, curing condition, ambient temperature, and casting date of the mass concrete placed in bottom slab and side wall of the in-ground type LNG tank as a super massive structure. Also, based on the numerical results, cracking possibility is predicted and counter measures to prevent the cracking are proposed. For the tasks, two optimum mix proportions were selected. From the results of the thermal stress analysis, the through crack index of 1.2 was satisfied for separately caste concrete lots except for the bottom slab caste in 2 separate sequences. For the double caste bottom slab, it is necessary introduce counter measures such as pre-cooling prior to the site construction. Also, another crack preventive measure is to lower the initial casting temperature by $25^{\circ}C$ or less to satisfy 1.2 through crack index criterion. In the $1^{st}$ and $2^{nd}$ caste bottom slab, the surface crack index was over 1.2. Therefore, the surface cracks can be controlled by implementing the curing conditions proposed in this study. Since the side wall's surface crack index was over 1.0, it is safe to assume that the counter preventive measures can control width and number of cracks.

Relation the Role of Wathe in withering and Mechanical Properties of Some Leafy Vegetables -1. Effect of Withering on Viscoelastic Properties of Spinach and Leek- (엽채류(葉菜類)의 조위(凋萎)와 역학물성(力學物性) -1. 조위(凋萎)와 물성변화(物性變化)-)

  • Kong, Jai-Yul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.3
    • /
    • pp.286-293
    • /
    • 1986
  • The purpose of this study was to investigate the effect of withering on mechanical properties for optimizing the condition of transportation and storage of fresh leafy vegetables which they would be easily able to be suffered the physical damage. Experimental material used were spinaches and leeks which were easily apt to be withered. The breaking stress, elastic modulus and viscosity were measured in the range of temperature $3{\sim}37^{\circ}C$ and water content $70{\sim}95%$ by the four element model, being used the creep tester made by author. As a result of this study, while water content was decreased, breaking stress was increased. The elastic modulus and viscosity of the specimens were not influenced on temperature, but on water content. In reversibility test of the withering, the appearance, water content and elastic modulus of the specimens were completely recovered to the initial freshness, but the viscosity was not.

  • PDF

A Study on the RRA(Retrogression and Reaging) treatment of 7050 Al alloy (7050 Al 합금의 RRA 처리에 관한 연구)

  • Choi, Joong-Whoan;Kim, Jang-Ryang;Lee, Sang-Lae;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.493-498
    • /
    • 2000
  • The effects of RRA treatment on the microstructures and mechanical properties of 7050 Al alloy were investigated by differential scanning calolimetry, transmission electron microscopy, microhardness measurement and electrical conductivity. The hardness of 2nd-step aged specimen at $175^{\circ}C$ was decreased to mimimum value and increased to a peak hardness, and then re-decreased with retrogression treatment. It was found that the hardness of 2nd-step aged specimen was further increased by 3rd step aging treatment($120^{\circ}C$x24h). The initial decrease in hardness during 2nd-step aging was due to the partial dissolution of pre-existing GP zone, the major precipitation hardening phase at T6 condition. It was confirmed that the major precipitation hardening phase at 3rd-step aging was GP zone and η' phase. The electrical conductivity increased continually through 2nd-step and 3rd-step aging treatment. It was conclude that the optium 2nd-step aging condition was at $175^{\circ}C$ for 50min by considering the hardness and electrical conductivity.

  • PDF

Design Approach for Boundary Element of Flexure-Governed RC Slender Shear Walls Based on Displacement Ductility Ratio (휨 항복형 철근콘크리트 전단벽의 경계요소설계를 위한 변위연성비 모델제시)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.687-694
    • /
    • 2014
  • This study established a displacement ductility ratio model for ductile design for the boundary element of shear walls. To determine the curvature distribution along the member length and displacement at the free end of the member, the distributions of strains and internal forces along the shear wall section depth were idealized based on the Bernoulli's principle, strain compatibility condition, and equilibrium condition of forces. The confinement effect at the boundary element, provided by transverse reinforcement, was calculated using the stress-strain relationship of confined concrete proposed by Razvi and Saatcioglu. The curvatures corresponding to the initial yielding moment and 80% of the ultimate state after the peak strength were then conversed into displacement values based on the concept of equivalent hinge length. The derived displacement ductility ratio model was simplified by the regression approach using the comprehensive analytical data obtained from the parametric study. The proposed model is in good agreement with test results, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.05 and 0.19, respectively. Overall, the proposed model is expected to be available for determining the transverse reinforcement ratio at the boundary element for a targeted displacement ductility ratio.

Activity and Survival of the Natural Bacteria under the Stressed Conditions Detected by Bioluminescent Phenotype (스트레스 하의 자연세균의 활성 및 생존의 발광표현형을 이용한 탐지)

  • Park, Kyoung-Je;Yoon, Hye-Young;Chun, Se-Jin;Lee, Ho-Sa;Lee, Dong-Hun;Jahng, Deokjin;Lee, Kyu-Ho
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.154-161
    • /
    • 1998
  • To investigate whether the introduced genetic marker is useful to detect the survivalship and activity of the natural bacteria under the stressed conditions, one Gram-negative isolate, KP964 was transformed to the luminous phenotype by transferring luxAB gene. Under the starvation-stress this luminous bacterial culturability (determined by colony-forming-units [CFU] on agar plate) decreased rapidly below the detection limit by 37 days, while its total cell number (determined by AODC) remained almost the same as its initial inocular size. At that time period, the viable cell number was estimated to be 1400 times higher than its CFU number. The bioiuminescence (determined by relative light units [RLU]) produced under the same condition was also monitored and found to decrease more rapidly than the culturability by 5-fold. Under the other stresses, e.g., osmotic shocks, acid shock, and exposure to toxic chemicals, this bacterial strain did not show the reliable correlation between CFU and RLU. These results might not suggest the direct estimation of bioiuminescence from the stressed bacteria be an index of both the survivalship and its activity. However, when the stressed bacterial cells were incubated under the favorable condition by relieving from the existing stress, the potential bioiuminescence (the lag periods before the increase of bioiuminescence, the increase rates of bioiuminescence, and the maximal levels of bioiuminescence) was shown to be highly dependent upon the strengths of the stresses exposed to the bacterial cells. Therefore, analysis of the potential bioiuminescence from the stressed bacteria revealed good relationships with survival as well as activity.

  • PDF

Liquefaction Resistance of Gravel-Sand Mixtures (자갈-모래 혼합토의 액상화 거동)

  • Kim, Bang-Sig;Kang, Byung-Hee;Yoon, Yeo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.47-56
    • /
    • 2007
  • In this research, the effects of the gravel content on the liquefaction behavior for both of the isotropically and $K_0-anisotropically$ consolidated gravel-sand mixtures are investigated. for this purpose, the cyclic triaxial tests for the specimens with the same relative density (Dr=40%) and variations of gravel content were performed. On the other hand, a series of undrained cyclic triaxial tests were carried out on the isotropically consolidated gravel-sand mixtures with the same void ratio (e=0.7) and from 0% to 30% gravel contents. Void ratios of gravel-sand mixtures with the same relative density (Dr=40%) are found to decrease significantly with the increase of the gravel content from 0% to about 70% and increase thereafter. But the void ratio of the sand matrix among the gravel skeleton increases with the increase of the gravel contents. Test results are as follows : for the isotropically consolidated specimen with 40% of relative density and low gavel contents (GC=0%, 20%, 40%), pore water pressure development and axial strain behavior during undrained cyclic loading show similar behavior to those of the loose sand because of high void ratio, and the specimens with high gravel content (70%) both pore pressure and strata behaviors are similar to those of dense sand. And the isotropically consolidated specimens with the same void ratio (e=0.7) and higher gravel contents show the same behavior of pore water pressure and axial strain as that of the loose sand, but for the lower gravel content this behavior shows similar behavior to that of dense sand. The liquefaction strength of the isotropically consolidated specimens with the same relative density increases with gravel content up to 70%, and the strength decreases with the increase of the gravel content at the same void ratio. Thus, it is confirmed that the liquefaction strength of the gravel-sand mixtures depends both on relative density and void ratio of the whole mixture rather than the relative density of the sand matrix filled among gravels. On the other hand, the behavior of pore water pressure and axial strain for the $K_0-anisotropically$ consolidated gravel-sand mixtures shows almost the same cyclic behavior of the sand with no stress reversal even with some stress reversal of the cyclic loading. Namely, even the stress reversal of about 10% of cyclic stress amplitude, the permanent strain with small cyclic strain increases rapidly with the number of cycles, and the initial liquefaction does not occur always with less than maximum pore water pressure ratio of 1.0. The liquefaction resistance increases with the gravel contents between 0% and 40%, but tends to decrease beyond 40% of gravel content. In conclusion, the cyclic behavior of gravel-sand mixtures depends on factors such as gravel content, void ratio, relative density and consolidation condition.

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF

Effect of Concentration of Nutrient Solution on Water and Nutrient Uptake of Tomato Cultivars in Hydroponics (배양액 농도가 수경재배 토마토의 품종별 생육과 양수분 흡수특성에 미치는 영향)

  • Choi, Gyeong Lee;Yeo, Kyung Hwan;Choi, Su Hyun;Jeong, Ho Jeong;Kang, Nam Jun
    • Journal of agriculture & life science
    • /
    • v.53 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • This study was carried out to acquire basic data for a long-term hydroponic culture through investigating water and inorganic ion uptake characteristics at different EC level of nutrient solution of three tomato varieties. Three different tomato varieties, the European type(cv. Daphnis), the Asian type(cv. Super Doterang) and cherry type(cv. Minichal), were used for the investigation. Also, the deep flow technique(DFT) was applied. The three different electrical conductivity(EC) level(1.0, 2.0, 3.0, and 4.0 dS·m-1) of hydroponic nutrient solution were used as variable. At a high EC level of nutrient solution, the leaf area and fresh weight decreased in the early stage, and its growth(plant height, leaf number, leaf area, fresh-weight) was poor with salt stress. Result showed that the higher the EC level of the nutrient solution, the lesser was water uptake. The water uptake was not significantly different from varieties in the first survey, but In the second survey, the 'Daphnis' did not show a significant decrease in water uptake in the EC level higher than 2.0 dS·m-1., on the other hand, 'Super Doterang' presented very low water uptake. At a low EC level, N, P, and K, were absorbed more than the concentration of the irrigation water, while Ca, Mg, S uptake were low. At a high EC level, almost ions absorbed less than 50% of the initial concentration of irrigation water. Thus, imbalance among ions was severe at low EC level compared to high EC level. 'Daphnis' was a variety that effectively utilize nutrients under nutrient stress, showing high absorption at low concentration condition and low absorption at high concentration condition. However, 'Daphnis' suffered most seriously by absorbing nutrients excessively.

Prediction of Concrete Temperature and Its Effects on Continuously Reinforcement Concrete Pavement Behavior at Early Ages (초기재령에서 연속철근콘크리트포장 거동에 콘크리트 온도의 영향과 예측)

  • Kim Dong-Ho;Choi Seong-Cheol;Won Moon-Cheol
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.55-62
    • /
    • 2006
  • Transverse cracks in continuously reinforced concrete pavement (CRCP) occur at early ages due to temperature and moisture variations. The width and spacing of transverse cracks have a significant effect on pavement performance such as load transfer efficiency and punchout development. Also, crack widths in CRCP depend on 'zero-stress temperature,' which is defined as a temperature where initial concrete stresses become zero, as well as drying shrinkage of concrete. For good long-term performance of CRCP, transverse cracks need to be kept tight. To keep the crack widths tight throughout the pavement life, zero-stress temperature must be as low as practically possible. Thus, temperature control at early ages is a key component In ensuring good CRCP performance. In this study, concrete temperatures were predicted using PavePro, a concrete temperature prediction program, for a CRCP construction project, and those values were compared with actual measured temperatures obtained from field testing. The cracks were also surveyed for 12 days after concrete placement. Findings from this study can be summarized as follows. First, the actual maximum temperatures are greater than the predicted maximum temperature in the ranges of 0.2 to 4.5$^{\circ}C$. For accurate temperature predictions, hydration properties of cementitious materials such as activation energy and adiabatic constants, should be evaluated and accurate values be obtained for use as input values. Second, within 24 hours of concrete placement, temperatures of concrete placed in the morning are higher than those placed in the afternoon, and the maximum concrete temperature occurred in the concrete placed at noon. Finally, from the 12 days of condition survey, it was noted that the rate of crack occurrence in the morning placed section was 25 percent greater than that in the afternoon placed section. Based on these findings, it is concluded that maximum concrete temperature has a significant effect on crack development, and boner concrete temperature control is needed to ensure adequate CRCP performance.

  • PDF

Hydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells

  • Yoon, Mi Na;Kim, Dong Kwan;Kim, Se Hoon;Park, Hyung Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.233-239
    • /
    • 2017
  • Intracellular calcium ($Ca^{2+}$) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide ($H_2O_2$) on intracellular $Ca^{2+}$ accumulation in mouse pancreatic acinar cells. Perfusion of $H_2O_2$ at $300{\mu}M$ resulted in additional elevation of intracellular $Ca^{2+}$ levels and termination of oscillatory $Ca^{2+}$ signals induced by carbamylcholine (CCh) in the presence of normal extracellular $Ca^{2+}$. Antioxidants, catalase or DTT, completely prevented $H_2O_2$-induced additional $Ca^{2+}$ increase and termination of $Ca^{2+}$ oscillation. In $Ca^{2+}$-free medium, $H_2O_2$ still enhanced CCh-induced intracellular $Ca^{2+}$ levels and thapsigargin (TG) mimicked $H_2O_2$-induced cytosolic $Ca^{2+}$ increase. Furthermore, $H_2O_2$-induced elevation of intracellular $Ca^{2+}$ levels was abolished under sarco/endoplasmic reticulum $Ca^{2+}$ ATPase-inactivated condition by TG pretreatment with CCh. $H_2O_2$ at $300{\mu}M$ failed to affect store-operated $Ca^{2+}$ entry or $Ca^{2+}$ extrusion through plasma membrane. Additionally, ruthenium red, a mitochondrial $Ca^{2+}$ uniporter blocker, failed to attenuate $H_2O_2$-induced intracellular $Ca^{2+}$ elevation. These results provide evidence that excessive generation of $H_2O_2$ in pathological conditions could accumulate intracellular $Ca^{2+}$ by attenuating refilling of internal $Ca^{2+}$ stores rather than by inhibiting $Ca^{2+}$ extrusion to extracellular fluid or enhancing $Ca^{2+}$ mobilization from extracellular medium in mouse pancreatic acinar cells.