DOI QR코드

DOI QR Code

Effect of Concentration of Nutrient Solution on Water and Nutrient Uptake of Tomato Cultivars in Hydroponics

배양액 농도가 수경재배 토마토의 품종별 생육과 양수분 흡수특성에 미치는 영향

  • Choi, Gyeong Lee (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Yeo, Kyung Hwan (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Choi, Su Hyun (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Jeong, Ho Jeong (Protected Horticulture Research Institute, NIHHS, RDA) ;
  • Kang, Nam Jun (Department of Horticulture(IALS), Gyeongsang National University)
  • 최경이 (국립원예특작과학원 시설원예연구소) ;
  • 여경환 (국립원예특작과학원 시설원예연구소) ;
  • 최수현 (국립원예특작과학원 시설원예연구소) ;
  • 정호정 (국립원예특작과학원 시설원예연구소) ;
  • 강남준 (경상대학교 원예학과(농업생명과학연구원))
  • Received : 2017.11.01
  • Accepted : 2018.09.05
  • Published : 2019.02.28

Abstract

This study was carried out to acquire basic data for a long-term hydroponic culture through investigating water and inorganic ion uptake characteristics at different EC level of nutrient solution of three tomato varieties. Three different tomato varieties, the European type(cv. Daphnis), the Asian type(cv. Super Doterang) and cherry type(cv. Minichal), were used for the investigation. Also, the deep flow technique(DFT) was applied. The three different electrical conductivity(EC) level(1.0, 2.0, 3.0, and 4.0 dS·m-1) of hydroponic nutrient solution were used as variable. At a high EC level of nutrient solution, the leaf area and fresh weight decreased in the early stage, and its growth(plant height, leaf number, leaf area, fresh-weight) was poor with salt stress. Result showed that the higher the EC level of the nutrient solution, the lesser was water uptake. The water uptake was not significantly different from varieties in the first survey, but In the second survey, the 'Daphnis' did not show a significant decrease in water uptake in the EC level higher than 2.0 dS·m-1., on the other hand, 'Super Doterang' presented very low water uptake. At a low EC level, N, P, and K, were absorbed more than the concentration of the irrigation water, while Ca, Mg, S uptake were low. At a high EC level, almost ions absorbed less than 50% of the initial concentration of irrigation water. Thus, imbalance among ions was severe at low EC level compared to high EC level. 'Daphnis' was a variety that effectively utilize nutrients under nutrient stress, showing high absorption at low concentration condition and low absorption at high concentration condition. However, 'Daphnis' suffered most seriously by absorbing nutrients excessively.

배양액의 농도 조건과 품종별 양수분 흡수특성을 구명하여 장기 수경재배를 위한 기초자료를 획득하고자 연구를 수행하였다. 시험 품종으로 토마토 대과종으로는 적색계인 '대프니스'와 도색계인 '수퍼도태랑' 소과종으로는 '미니찰' 품종을 이용하였다. 담액재배하였으며 배양액의 EC를 1.0dS·m-1, 2.0dS·m-1, 3.0dS·m-1, 4.0dS·m-1로 다르게 공급하였다. 배양액의 EC가 높은 처리에서 초기에는 엽면적, 생체중이 감소하였으며 염류장해가 발생하면서 생육(초장, 엽면적, 경경, 생체중)이 불량해졌다. 배양액의 EC가 높을수록 수분흡수가 적었다. 수분흡수량은 1차에서는 품종별 차이가 뚜렷하지 않았으나 2차 조사에서는 '대프니스'가 EC 2.0dS·m-1 이상에서도 수분흡수가 크게 감소하지 않았으나 '수퍼도태랑'은 높은 EC 처리에서 수분 흡수가 감소하였다. 배양액의 EC가 낮은 처리에서 무기이온의 흡수는 N, P, K는 급액농도 보다 높게 흡수된 반면에 Ca, Mg, S는 흡수율이 낮았다. 배양액의 EC가 높은 처리에서는 대부분의 이온이 초기 투입농도의 50% 이하로 흡수되었다. 따라서 EC가 낮은 처리가 높은 처리 보다 흡수되고 남은 배양액의 이온간 불균형이 심하였다. 품종 간에는 '대프니스'가 저농도에서 흡수량이 많고 고농도에서는 흡수량이 적어 불량한 양분조건에서 양분을 효율적으로 이용하는 품종이었으나 과잉 흡수된 양분으로 인한 장해 증상은 가장 심하게 나타내었다.

Keywords

References

  1. Cedergreen N and Madsen TV. 2003. Light regulation of root and leaf NO3 uptake and reduction in the floating macrophyte Lemna minor. New Phytol. 161: 449-457. https://doi.org/10.1046/j.1469-8137.2003.00936.x
  2. Choi EY, Lee YB and Kim JY. 1998. Development of optimal nutrient solution for tomato substrate culture in closed system. J. Bio Fac. Env. 7: 43-54.
  3. De Kreij C and Schrevens E. 1995. Application of mixture-theory for the optimization of the composition of the nutrient solution. Acta Hortic. 401: 283-291.
  4. Giuffrida F, Heuvelink E and Stanghellini C. 2008. Effects of root-zone nutrient concentration on cucumber grown in rockwool. Acta Hortic. 801: 1055-1063.
  5. Jolliet O and Bailey BL. 1992. The effect of climate on tomato transpiration in greenhouses: measurements and models comparison. Agricultural and Forest Meteorology. 58: 43-62. https://doi.org/10.1016/0168-1923(92)90110-P
  6. Lee HG. 1999. Effect of the concentration of nutrient solution on growth, yield and quality of semi-forcing culture of tomato varieties in hydroponics. J. Bio Fac Env. 8: 43-54.
  7. Lyons EM, Pote J, Da Costa M and Huang B. 2007. Whole plant carbon relations and root respiration associated with root tolerance to high soil temperature for Agrostis grasses. Environ Exp Bot. 59: 307-313. https://doi.org/10.1016/j.envexpbot.2006.04.002
  8. Monteinth JL and Unsworth M. 2007. Principles of environmental physics. Academic press, London.
  9. Munns R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25: 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  10. Pardossi A, Falossi F, Malorgio F, Incrocci L and Bellocchi G. 2005. Empirical models of macronutrient uptake in melon plants grown in recirculating nutrient solution culture. J. Plant Nutr. 27: 1261-1280. https://doi.org/10.1081/PLN-120038547
  11. Rachmilevitch S, Lambers H and Huang B. 2006. Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species. J. Exp Bot. 57: 623-631. https://doi.org/10.1093/jxb/erj047
  12. Rural Development Adminstration. 2016. Statistical data of soilless culture area in Korea. RDA.
  13. Savvas D. 2001. Nutritional management of vegetables and ornamental plants in hydroponics. In R. Dris, R. Niskanen & S.M. Jain, eds. Crop Management and Postharvest Handling of Horticultural Products. 1: 37-87.
  14. Schwarz D and Kuchenbuch R. 1998. Water uptake by tomato plants grown in closed hydroponic system dependent in the EC-level. Acta Hortic. 458: 323-328. https://doi.org/10.17660/ActaHortic.1998.458.41
  15. Steiner AA. 1966. The influence of the chemical composition of a nutrient solution on the production of tomato plants. Plant Soil. 24: 454-466. https://doi.org/10.1007/BF01374052
  16. Thompson RB, Gallardo M, Rodriguez JS, Sanchez JA and Magan JJ. 2013. Effect of n uptake concentration on nitrate leaching from tomato grown in free-draining soilless culture under mediterranean conditions. Sci. Hortic. 150: 387-398. https://doi.org/10.1016/j.scienta.2012.11.018
  17. Voogt W. 1993. Nutrient uptake of year round tomato crops. Acta Hortic. 339: 99-112. https://doi.org/10.17660/ActaHortic.1993.339.9
  18. Yu SO and Bae JH. 2005. Development of optimal nutrient solution of tomato in a closed soilless culture system. J. Bio-Environment Control. 14: 203-211.