• Title/Summary/Keyword: Initial soil Temperature

Search Result 210, Processing Time 0.028 seconds

Annual Fluctuations and Vertical Distributions of Cellulase, Xylanase Activities and Soil Microorganisms in Humus Horizon of a Pinus rigida Stand (리기다소나무림 부식토내의 Cellulase , Xylanase 의 활성과 토양미생물의 연간변동과 수직분포)

  • Chang, Nam-Kee;Jun Hi Yoo
    • The Korean Journal of Ecology
    • /
    • v.9 no.4
    • /
    • pp.231-241
    • /
    • 1986
  • The annual decomposition of cellulose and hemicellulose by microorganism and distribution of soil microbial flora were investigated in the humus horizon of a Pinus rigida stand in Mt. Kwanak. The cellulase activity was the lowest, 142$\mu$g glucose/g/hr from Dec. 1985 to Mar. 1986 and the highest, 760~1, 072$\mu$g glucose/g/hr in Jul. and Aug. 1985. The xylanase activity was 47% higher than the cellulase activity and was the lowest, 211~275$\mu$g xylose /g/hr from Feb. to Mar. 1986 and the highest as 799~1, 322$\mu$g xylose/g/hr from Jun. to Aug. 1986. The vertical distribution of the enzyme activity was decreased with the order of F, H, L, and A1 in both enzymes and the activities were exponentially decreased below L horizon, which suggests that most decomposition be done in F and H horizons with lots of organic matters. The SEM study slowed that the main decomposers of litters were fungi and initial attack into litters was also made by them. The enzyme activities of soil had strong correlations with the temperature and the precipitation. The correlation coefficients were 0.813 and 0.886 in the cellulase, and 0.673 and 0.626 in the xylanase for the temperature and the precipitation, respectively.

  • PDF

The Effect of the Formaldehyde Removal of Fore Temperate Ground Cover Plants (4가지 온대성 지피식물의 실내 포름알데이드 제거효과)

  • Ju, Jin-Hee;Bang, Kwang-Ja;Lee, Jin-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.2 s.121
    • /
    • pp.49-54
    • /
    • 2007
  • This research was performed to investigate the effect of formaldehyde removal and confirm the utility of plants as indoor environment improvement systems. The plant materials used in this study were Fatsia japonica, Ardisia japonica, Ardisia pusilla and Davallia mariesii. Plants were placed in an airtight chamber under artificial formaldehyde. The initial formaldehyde concentration in the chamber was $500{\pm}30ppb$, and the conditions of $1,500{\sim}2,000lux$ light, $25{\pm}5^{\circ}C$ temperature and $80{\sim}90%$ humidity were maintained. Each chamber was treated as no plant, plant-only and Plant+soil. The total leaf number for Davallia mariesii, Ardisia japonica, Ardisia pusilla, and Fatsia japonica was 40.8, 48.6, 62.3, and 11.8 respectively. The total leaf space n of those plant materials were $2,385cm^2,\;1,252cm^2,\;2,468cm^2\;and\;1,262cm^2$ respectively. The formaldehyde concentration was reduced to $80{\sim}90%$ of the initial concentration in plant-only and Plant+Soil treatment chamber of all species in 12 hours. In the plant-only chamber, Fatsia japonica had removed formaldehyde density by 95% after 12 hours while Ardisia japonica had removed 90%. In the case of Ardisia pusilla, the early removal rate was higher in the plant-only treatment chamber than the Plant+Soil treatment chamber. The formaldehyde removal rate of Davallia mariesii was 98% after 12 hours. In the Plant+Soil treatment chamber, the amount of removal of formaldehyde per time of Davallia mariesii, Ardisia japonica, Ardisia pusilla, and Fatsia japonica was 20.42ppb/hr, 16.28ppb/hr, 2.5.42ppb/hr, 10.28ppb/hr respectively. In the plant-only, That was 22.50ppb/hr, 20.97ppb/hr, 20.83ppb/hr, 20.97ppb/hr respectively.

디젤로 오염된 토양의 효과적인 Bioventing

  • 왕성환;오영진;문원재;박태주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.66-69
    • /
    • 2002
  • In this work, cost effective venting is considered by comparing flow rates of 5$m\ell$/min, 10$m\ell$/min, and 20$m\ell$/min. Studies were performed on a soil artificially contaminated with diesel oil (the initial TPH(Total Petroleum Hydrocarbon) concentration of 7098mg/kg), and nutrient condition was C:N:P rate of 100:10:1. The soil has a sandy texture with pH of 6.8, 2.16 ~2.38% organic matter, a total porosity of 47~52% and field capacity 16.2~ 17.2%. The column experiments was made of glass column of 60cm length and 10cm I.D. at controlled temperature of 2$0^{\circ}C$($\pm$2.5$^{\circ}C$). The efficiency of continuous flow rate of 5, 10 and 20$m\ell$/min resulted in separately 61.3%, 58.1%, and 55% reduction of initial TPH concentration(7098mg/kg). Hydrocarbon utilizing microbial count and dehydrogenase activity in air flow of 5$m\ell$/min were higher than those of the others. The first order degradation rate of n-alkanes ranging from C10 to C28 was higher than that of pristane and phytane as isoprenoids. The $C_{17}$/pristane and $C_{18}$phytane ratios for monitoring the degree of biodegradation were useful only during the early stages of oil degradation. Degradation contributed from about 89% to 93% of TPH removal. Volatilization loss of diesel oil in contaminated soil was about 7% to 11%, which was significantly small compared to degradation.n.

  • PDF

Nitrogen Mineralization and Dynamics in the Forest Soil (삼림토양의 질소 무기화와 무기질소의 동태)

  • Mun, Hyeong-Tae
    • The Korean Journal of Ecology
    • /
    • v.14 no.3
    • /
    • pp.317-325
    • /
    • 1991
  • Mineral nitrogen dynamics and net mineralization of nitrogen in oak(quercus accutissima) and pine(pinus rigida) forest soils were studied. Nitrogen mineralization was determined over 8-week period by incubation method at laboratory. Initial water content of incubating soils was adjusted by applying suction(30mmhg), and lossof water during incubation was recovered with deionized water using syringe at every 3 or 4days. Temperature of incubator was maintained with 35+0.3c during the incubation period. Content of organic matter, total nitrogen, nh4-n and no3-n in soils in oak stand were significantly highter than those in pine stand. soil ph was lower in pine stand than in oak stand. initial nh4-n and no3-n of soils used in incubation experiment were 12.6 ug/g and 6.5 ug/g for oak stand, and 5.3ug/g and 5.1 ug/g for pine stand, respectively. Production of nh4-n increased from the beginning st both stands, and showed a peak at 5th week in oak stand(28.5 ug/g) and 6th week in pine stand(16.7 ug/g), and then decreased. intial no3-n of soils in oak(6.5 ug/g) and pine(5.1ug/g)stands, increased to 36.2 ug/g in soils of oak stand(5th week) and 13.4 ug/g in pine stand(4th week), respectively. The low values of no3-n of the field soil in the growing season compared with those of incubating soils at both stands indicate that considerable amount of nh4-n and no3-n produced in soils of oak and pine stands during two-months incubation were 59.7 and 141.6mg/kg soil, and 51.9 and 41.2mg/kg soil, respectively.

  • PDF

Analyzing off-line Noah land surface model spin-up behavior for initialization of global numerical weather prediction model (전지구수치예측모델의 토양수분 초기화를 위한 오프라인 Noah 지면모델 스핀업 특성분석)

  • Jun, Sanghee;Park, Jeong-Hyun;Boo, Kyung-On;Kang, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.181-191
    • /
    • 2020
  • In order to produce accurate initial condition of soil moisture for global Numerical Weather Prediction (NWP), spin-up experiment is carried out using Noah Land Surface Model (LSM). The model is run repeatedly through 10 years, under the atmospheric forcing condition of 2008-2017 until climatological land surface state is achieved. Spin-up time for the equilibrium condition of soil moisture exhibited large variability across Koppen-Geiger climate classification zone and soil layer. Top soil layer took the longgest time to equilibrate in polar region. From the second layer to the fourth layer, arid region equilibrated slower (7 years) than other regions. This result means that LSM reached to equilibrium condition within 10 year loop. Also, spin-up time indicated inverse correlation with near surface temperature and precipitation amount. Initialized from the equilibrium state, LSM was spun up to obtain land surface state in 2018. After 6 months from restarted run, LSM simulates soil moisture, skin temperature and evaportranspiration being similar land surface state in 2018. Based on the results, proposed LSM spin-up system could be used to produce proper initial soil moisture condition despite updates of physics or ancillaries for LSM coupled with NWP.

Simulation of Daily Soil Moisture Content and Reconstruction of Drought Events from the Early 20th Century in Seoul, Korea, using a Hydrological Simulation Model, BROOK

  • Kim, Eun-Shik
    • Journal of Ecology and Environment
    • /
    • v.33 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • To understand day-to-day fluctuations in soil moisture content in Seoul, I simulated daily soil moisture content from 1908 to 2009 using long-term climatic precipitation and temperature data collected at the Surface Synoptic Meteorological Station in Seoul for the last 98 years with a hydrological simulation model, BROOK. The output data set from the BROOK model allowed me to examine day-to-day fluctuations and the severity and duration of droughts in the Seoul area. Although the soil moisture content is highly dependent on the occurrence of precipitation, the pattern of changes in daily soil moisture content was clearly quite different from that of precipitation. Generally, there were several phases in the dynamics of daily soil moisture content. The period from mid-May to late June can be categorized as the initial period of decreasing soil moisture content. With the initiation of the monsoon season in late June, soil moisture content sharply increases until mid-July. From the termination of the rainy season in mid-July, daily soil moisture content decreases again. Highly stochastic events of typhoons from late June to October bring large amount of rain to the Korean peninsula, culminating in late August, and increase the soil moisture content again from late August to early September. From early September until early October, another sharp decrease in soil moisture content was observed. The period from early October to mid-May of the next year can be categorized as a recharging period when soil moisture content shows an increasing trend. It is interesting to note that no statistically significant increase in mean annual soil moisture content in Seoul, Korea was observed over the last 98 years. By simulating daily soil moisture content, I was also able to reconstruct drought phenomena to understand the severity and duration of droughts in Seoul area. During the period from 1908 to 2009, droughts in the years 1913, 1979, 1939, and 2006 were categorized as 'severe' and those in 1988 and 1982 were categorized as 'extreme'. This information provides ecologists with further potential to interpret natural phenomenon, including tree growth and the decline of tree species in Korea.

Bioremediation Efficiency of Oil-Contaminated Soil using Microbial Agents (토양미생물 복원제를 이용한 유류로 오염된 토양의 복원)

  • Hong, Sun-Hwa;Lee, Sang-Min;Lee, Eun-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.301-307
    • /
    • 2011
  • Oil pollution was world-wide prevalent treat to the environment, and the physic-chemical remediation technology of the TPH (total petroleum hydrocarbon) contaminated soil had the weakness that its rate was very slow and not economical. Bioremediation of the contaminated soil is a useful method if the concentrations are moderate and non-biological techniques are not economical. The aim of this research is to investigate the influence of additives on TPH degradation in a diesel contaminated soil environment. Six experimental conditions were conduced; (i) diesel contaminated soil, (ii) diesel contaminated soil treated with microbial additives, (iii) diesel contaminated soil treated with microbial additives and the mixture was titrated to the end point of pH 7 with NaOH, (iv) diesel contaminated soil treated with microbial additives and accelerating agents and (v) diesel contaminated soil treated with microbial additives and accelerating agents, and the mixture was titrated to the end point of pH 7 with NaOH. After 10 days, significant TPH degradation (67%) was observed in the DSP-1 soil sample. The removal of TPH in the soil sample where microbial additives were supplemented was 38% higher than the control soil sample during the first ten days. The microbial additives were effective in both the initial removal rate and relative removal efficiency of TPH compared with the control group. However, various environmental factors, such as pH and temperature, also affected the activities of microbes lived in the additives, so the pH calibration of the oil-contaminated soil would help the initial reduction efficiency in the early periods.

TPH Removal of the Biodegradation Process Using 4 Indigenous Microorganisms for the Diesel Contaminated Soil in a Military Camp (디젤로 오염된 군부대 토양에 대하여 토착미생물 4종을 이용한 생분해법의 TPH 제거 효율 규명)

  • Park, Min-Ho;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.3
    • /
    • pp.49-58
    • /
    • 2012
  • Batch experiments using indigenous and commercialized adventive microorganisms were performed to investigate the feasibility of the biodegradation process for the diesel contaminated soil, which was taken in US Military Camp 'Hialeah', Korea. TPH concentration of the soil was determined as 3,819 mg/kg. Four indigenous microorganisms having high TPH degradation activity were isolated from the soil and by 16S rRNA gene sequence analysis, they were identified as Arthrobacter sp., Burkholderia sp., Cupriavidus sp. and Bacillus sp.. Two kinds of commercialized solutions cultured with adventive microorganisms were also used for the experiments. Various biodegradation conditions such as the amount of microorganism, water content and the temperature were applied to decide the optimal bioavailability condition in the experiments. In the case of soils without additional microorganisms (on the natural attenuation condition), 35% of initial TPH was removed from the soil by inhabitant microorganisms in soil for 30 days. When the commercialized microorganism cultured solutions were added into the soil, their average TPH removal efficiencies were 64%, and 54%, respectively, which were higher than that without additional microorganisms. When indigenous microorganisms isolated from the contaminated soil were added into the soil, TPH removal efficiency increased up to 95% (for Bacillus sp.). According to the calculation of the average biodegradation rates for Bacillus sp., the remediation goal (87% of the removal efficiency: 500 mg/kg) for the soil would reach within 24 days. Results suggested that TPH removal efficiency of biodegradation by injecting indigenous microorganisms is better than those by injecting commercialized adventive microorganisms and only by using the natural attenuation.

Ecophysiology of Seed Germination in Chinese Milk Vetch (Astragalus sinicus L.)

  • Shim, Sang-In;Kang, Byeung-Hoa
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.19-24
    • /
    • 2004
  • Germination and emergence habits of Chinese milk vetch (CMV) were examined to obtain the basic information for the effect of environmental conditions and cultural practices on the seedling density. Seed germination tests with different water potentials, temperatures, and soil and water depths showed the environmental effects on the characters related to seed germination in CMV. Imbibition under different temperatures reflects that initial velocity was rapid at higher temperature, however, the times to full imbibition were not different between 15 and $25^{\circ}$. The optimal germination temperature for CMV germination was ranged from 15 to 20 and the germination was highly affected by water potential of media at relatively high temperature above $20^{\circ}$. When the seeds were sown in flooded condition the germination was not proportionally affected by water depth. In addition, there was no correlation between water depth and oxygen concentration. The germination of seeds flooded by 2cm water depth were poorly germinated compared to other depths. Results indicated that the germination of submerged seeds was more highly influenced by flooding depth than the temperature, it was also affected more strongly at 10 than $20^{\circ}$. Emergence of CMV depending on the thickness of covered soil was poor when the soil layer was greater than 5cm. In the experiment with seeds collected between 22 days after flowering (OAF) and 52 DAF, the highest germination ability of CMV seeds was observed at 39 DAF and germinability was decreased subsequently as seeds became mature. The lower germinability may be due to the enhanced seed dormancy.

The Effect of the Ground Composition on Thermal Environment in Multi -residential Building Block (공동주택 단지 내 지반 특성 및 지반 구성에 따른 열적 특성에 관한 연구)

  • Hwang, Hyo-Keun;Song, Doo-Sam
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.88-97
    • /
    • 2009
  • In these days, it attracts our attention to create a green outdoor environment around the building block in urban area. Green space and permeable ground covering are increased by laws and regulations. According to these trends, variety researches for improving outdoor environment are accomplished at this moment. However, the problems for outdoor environment such as heat island effect and air contaminant in urban area are still reported. The purpose of this study is to examine the variables to affect the formation of outdoor thermal environment by quantitative analysis. As a initial study, in this paper, the effect of ground composition on changes of surface temperature and heat flux in multi-residential building were analyzed by field measurement and numerical simulation. Through field measurement, the surface temperature and heat flux of artificial ground in multi-residential building in Suwon city were measured. The result showed that the surface temperature was decreased by about $20^{\circ}C$ with afforestation of artificial ground compared with those of concrete covering. Moreover, the inner temperature of artificial ground was changed as same behaviors of outdoor temperature changes to depths of 20cm. In simulation, the effect of soil types and depth of artificial ground on the changes of the surface temperature and heat flux were analyzed. As results, the natural soil ground was more effective against lowering the surface temperature than any other cases in the analyzed cases.