• 제목/요약/키워드: Initial shape analysis

검색결과 558건 처리시간 0.041초

열간단조에서 유한요소법과 유전 알고리즘을 이용한 예비성형체의 최적형상 설계 연구 (A Study on the Optimal Preform Shape Design using FEM and Genetic Algorithm in Hot Forging)

  • 염성호;이종호;우호길
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.29-35
    • /
    • 2007
  • The main objective of this paper is to propose the optimal design method of forging process using genetic algorithm. Design optimization of forging process was doing about one stage and multi stage. The objective function is considered the filling of die. The chosen design variables are die geometry in multi stage and initial billet shape in one stage. We performed FE analysis to simulated forging process. The optimized preform and initial billet shape was obtained by genetic algorithm and FE analysis. To show the efficiency of GA method in forging problem are solved and compared with published results.

Investigation on deck-stay interaction of cable-stayed bridges with appropriate initial shapes

  • Liu, Ming-Yi;Lin, Li-Chin;Wang, Pao-Hsii
    • Structural Engineering and Mechanics
    • /
    • 제43권5호
    • /
    • pp.691-709
    • /
    • 2012
  • This paper provides a variety of viewpoints to illustrate the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges. Based on the smooth and convergent bridge shapes obtained by the initial shape analysis, the one-element cable system (OECS) and multi-element cable system (MECS) models of the Kao Ping Hsi Bridge in Taiwan are developed to verify the applicability of the analytical model and numerical formulation from the field observations in the authors' previous work. For this purpose, the modal analysis of the two finite element models are conducted to calculate the natural frequency and normalized mode shape of the individual modes of the bridge. The modal coupling assessment is also performed to obtain the generalized mass ratios among the structural components for each mode of the bridge. The findings indicate that the coupled modes are attributed to the frequency loci veering and mode localization when the "pure" deck-tower frequency and the "pure" stay cable frequency approach one another, implying that the mode shapes of such coupled modes are simply different from those of the deck-tower system or stay cables alone. The distribution of the generalized mass ratios between the deck-tower system and stay cables are useful indices for quantitatively assessing the degree of coupling for each mode. These results are demonstrated to fully understand the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges.

VisualLISP을 이용한 다단이형인발 중간패스 단면형상설계 프로그램 개발 (Development of Intermediate Die Shape Design Program for Multi-Pass Shape Drawing by Using VisualLISP)

  • 이상곤;이선봉;김병민
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.242-247
    • /
    • 2010
  • In the multi-pass shape drawing process, it is important to design the intermediate dies for producing sound products. Up to now, the design of the intermediate dies is mainly carried out by the industrial experts based on their experience. In this study, a design program was developed to design the intermediate dies for multi-pass shape drawing process. The program was programmed by using VisualLISP. In this program the intermediate dies can be designed by using the initial material shape and the final product shape. In order to verify the effectiveness, the program was applied to design the intermediate dies of multi-pass shape drawing for producing four teeth spline and gun slide. Finally, FE analysis and shape drawing experiment were performed to verify the effectiveness of the designed intermediate dies. As a result, it was possible to produce the drawn products with the required dimensional accuracy.

Collapse mechanism for deep tunnel subjected to seepage force in layered soils

  • Yang, X.L.;Yan, R.M.
    • Geomechanics and Engineering
    • /
    • 제8권5호
    • /
    • pp.741-756
    • /
    • 2015
  • The prediction of impending collapse of deep tunnel is one of the most difficult problems. Collapse mechanism of deep tunnel in layered soils is derived using a new curved failure mechanism within the framework of upper bound theorem, and effects of seepage forces are considered. Nonlinear failure criterion is adopted in the present analysis, and the possible collapse shape of deep tunnel in the layered soils is discussed in this paper. In the layered soils, the internal energy dissipations along velocity discontinuity are calculated, and the external work rates are produced by weight, seepage forces and supporting pressure. With upper bound theorem of limit analysis, two different curve functions are proposed for the two different soil stratums. The specific shape of collapse surface is discussed, using the proposed curve functions. Effects of nonlinear coefficient, initial cohesion, pore water pressure and unit weight on potential collapse are analyzed. According to the numerical results, with the nonlinear coefficient increase, the shape of collapse block will increase. With initial cohesion of the upper soil increase, the shape of failure block will be flat, and with the lower soil improving, the size of collapsing will be large. Furthermore, the shape of collapsing will decrease with the unit weight decrease.

다분할 해석법에 의한 장형코일의 곡가공 연구 (A Study of Bending Using Long Type Coil by Discrete Method)

  • 이영화;장창두
    • 대한조선학회논문집
    • /
    • 제45권3호
    • /
    • pp.303-308
    • /
    • 2008
  • The induction heating is more efficient for a plate bending because of its easy operation and control of working parameters, compared with the heating by a gas torch. The existing axis symmetric analysis method could neither handle initial curved plates nor be used in the optimization of coil shapes because of its limit of an axis symmetric coil shape. But the proposed method using some discrete part models and analysis processes could overcome these difficulties and show more accurate results in temperatures and deflections of flat or curved plates with initial curvature than those in the existing axis symmetric analysis method. This method is composed of the multi-disciplinary analyses such as an electro magnetic analysis, a heat transfer analysis and a deformation analysis based on inherent strain approach per each step. Traditionally, the coil shape in the induction heating is circular shape and it needs the moving process along heating lines. To overcome this, the 'Long Type Coil' with some linear parallel coils was proposed. It did not need the moving process along heating lines and reduced the heating process time. The results of experiments were compared with those of the simulation.

직접설계법에 의한 박판부품의 초기형상설계 (Blank Design for Sheet Metal Product Based on Direct Design Method)

  • 윤정환;김상국;정관수;연의정
    • 소성∙가공
    • /
    • 제9권6호
    • /
    • pp.598-603
    • /
    • 2000
  • In order to improve trial-and-error based conventional practices for optimizing forming processes, a direct design method to guide iterative design practices, called the ideal forming theory, has been previously developed. In the theory, material elements are required to deform following the minimum Plastic work Path. The theory can be used to determine the ideal initial blank shape needed to best achieve a specified final shape while resulting in optimum strain distributions. In this work, the direct design method based on the ideal forming theory was applied to design initial design shape for VCR deck chassis. Based on the solution of the ideal forming theory, FEM analysis was utilized to evaluate an optimum blank shape to be formed without tearing. Simulation results are in good agreement with experimental data. It was shown that the proposed sequential design procedure based on direct design method and FEM can be successfully applied to optimize the die design Procedure of sheet metal forming processes.

  • PDF

Numerical modeling of slipforming operations

  • Lachemi, M.;Elimov, R.
    • Computers and Concrete
    • /
    • 제4권1호
    • /
    • pp.33-47
    • /
    • 2007
  • Slipforming is a construction method in which the forms move continuously during concrete placement. This paper presents a numerical procedure based on the finite element method to simulate the thermal behavior of concrete during slipforming operations. The validity of the model was successfully tested by simulating a very complex but well documented field case of actual slipforming operations performed during the construction of an offshore concrete oil platform structure. The results obtained have been related to the shape of the concrete "hardened front" in the forms, which allows quick evaluation of the operation. The results of the numerical investigation have shown that the shape of the "hardened front" can be affected by the temperature of the fresh concrete and ambient conditions. For a given initial concrete temperature, there are limitations for the ambient temperature that, when exceeded, can create an unfavorable shape of the concrete "hardened front" in the forms. Similarly, for a given ambient temperature, the initial concrete temperature should not be fall below an established limit in order to avoid unfavorable shape of the "hardened front".

TCS요소론 이용한 인장 막구조물의 초기명상해석 및 응력변형해석 (Initial Shape Finding and Stress-Deformation Analysis of Pretensioned Membrane Structures with Triangular Constants Strain Element)

  • 고혁준;송평훈;송호산
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.230-237
    • /
    • 2004
  • In this study, equation of finite element is formulated to analyze relations of large deformation-small deformation considering geometrical nonlinear for membrane structure. Total Lagrangian Formulation(TLF) is introduced to formulate theory and equation of motion considering Triangular Constant Strain(TCS) element in finite, element analysis is formulated. Finite element program is made by equation of motion considering TLF. This study analyzed a variety of examples, so compared with the past results.

  • PDF

설계민감도해석과 요소망 변형법을 이용한 전자소자의 3차원 형상최적화 (3D Shape Optimization of Electromagnetic Device Using Design Sensitivity Analysis and Mesh Relocation Method)

  • 류재섭;;고창섭
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권7호
    • /
    • pp.307-314
    • /
    • 2003
  • This paper presents a 3D shape optimization algorithm for electromagnetic devices using the design sensitivity analysis with finite element method. The structural deformation analysis based on the deformation theory of the elastic body under stress is used for mesh renewing. The design sensitivity and adjoint variable formulae are derived for the 3D finite element method with edge element. The results of sensitivity analysis are used as the input data of the structural analysis to calculate the relocation of the nodal points. This method makes it possible that the new mesh of analysis region can be obtained from the initial mesh without regeneration. The proposed algorithm is applied to the shape optimization of 3D electromagnet pole to net a uniform flux density at the target region.

신경망을 이용한 클러치 기어의 정밀성형공법 개발 (Development of Forming Technology for Clutch Gear Using Artificial Neural Network)

  • 강재영;김병민;김영환;김동환
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.827-833
    • /
    • 2011
  • Precision forging of gears has a lot of advantages when compared to conventional gear shaping, because it allows the manufacture of gear parts without flash and consequently without the need for subsequent machining operations. In this study, the cold forging process is determined to manufacture the cold forged product for the precision clutch gear used of a commercial automobile, To do this, shape ratio of initial shape having influence the forgeability of forged product is analyzed. The optimal initial shape of clutch gear is designed using the results of DEFORM-3D and the artificial neural network (ANN). The initial shape through the detail analysis results, such as metal flow, distributions of strain can be obtained.