• Title/Summary/Keyword: Initial Velocity

Search Result 1,079, Processing Time 0.03 seconds

A Study for In-situ Application of High Strength Antiwashout Underwater Concrete (고장도용 수중불분리성 콘크리트의 현장적용을 위한 연구)

  • 문한영;송용규;이승훈;정재홍
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.336-345
    • /
    • 2001
  • The construction of underwater structures has been increased, but underwater concrete hassome problems of quality deterioration and contamination around in-situ of civil and architecture; therefore, new materials and methods for them are demanded. In this paper in-situ application of underwater antiwashout concrete which is manufactured for trio purpose of not only decreasing suspended solids and the heat of hydration but also increasing long term strength was studied. In the case of mock-up test(Ⅰ), when underwater antiwashout concrete, whose slump flow was 58 cm, was placed in the mock-up test at a speed of 24 ㎥/hr, it took about a minute to flow to the side wall, and the surface was maintained at horizontal level. In this case, compressive strength of the core specimens in each section was higher than the standard design compressive strength of 240 kgf/㎠. In the case of mock-up test(II), pH value and suspended solids of high strength underwater antiwashout concrete were 10.0∼11.0 and 51 mg/ℓ at 30 minutes later, initial and final setting time were about 30, 37 hr, and the slump flow of that was 53$\pm$2 cm. In the placement at a speed of 27 ㎥/hr, there was no large difference in flowing velocity, with or without reinforcement and flowing slope was maintained at horizontal level. In this case, compressive strength and elastic modulus of the core specimens somewhat decreased as flowing distance was far : however, those of central area showed the highest value.

Oil Spill Visualization and Particle Matching Algorithm (유출유 이동 가시화 및 입자 매칭 알고리즘)

  • Lee, Hyeon-Chang;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.53-59
    • /
    • 2020
  • Initial response is important in marine oil spills, such as the Hebei Spirit oil spill, but it is very difficult to predict the movement of oil out of the ocean, where there are many variables. In order to solve this problem, the forecasting of oil spill has been carried out by expanding the particle prediction, which is an existing study that studies the movement of floats on the sea using the data of the float. In the ocean data format HDF5, the current and wind velocity data at a specific location were extracted using bilinear interpolation, and then the movement of numerous points was predicted by particles and the results were visualized using polygons and heat maps. In addition, we propose a spill oil particle matching algorithm to compensate for the lack of data and the difference between the spilled oil and movement. The spilled oil particle matching algorithm is an algorithm that tracks the movement of particles by granulating the appearance of surface oil spilled oil. The problem was segmented using principal component analysis and matched using genetic algorithm to the point where the variance of travel distance of effluent oil is minimized. As a result of verifying the effluent oil visualization data, it was confirmed that the particle matching algorithm using principal component analysis and genetic algorithm showed the best performance, and the mean data error was 3.2%.

Analysis of the Sea Condition on the Patrol Ship Cheonan Sinking Waters (천안호 침몰해역의 해상조건 분석)

  • Kim, Kang-Min;Lee, Joong-Woo;Kim, Kyu-Kwang;Kwon, So-Hyung;Lee, Hyung-Ha
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.349-354
    • /
    • 2010
  • Cheonan, Republic of Korea Navy patrol ship sank had happened by an unknown incident in the vicinity of Baekryeongdo southwest 1.6km(1 mile) sea at 21:45 on March 26, 2010. In terms of coastal researcher's point of view, it is meaningful to provide the sea condition of basic data necessary for search and rescue, more detailed predictions and inference data through the numerical simulations. Thus, in this study, we investigated the weather, wave, tide, tidal current, bottom soil conditions, and suspended sediment are investigated at the coast of Baekryeong-Daechung islands. And based on these data, the characteristics of sea conditions were analyzed. The tidal period at the time of incident corresponds between neap tide to mean tide. Until April 3-4 after March 26, the date of incident, the strongest velocity was progressed towards the spring tide. Thus, it was considered to be difficult to search and rescue operations. Also, because the ebb tide was in progress during 21:00 to 22:00, mass transport seems to be prevailed to the southeast. In particular, as the sudden turbulence due to the irregular topography existed was anticipated, we had carried out particle tracking experiment. From this experiment, depending on the situation of flow, the initial movement of the particles were directed to the southeast but it turned out moving towards the offshore based on the long term prediction. Through this result, it is considered that the scope of the search operation should be expanded towards the open sea.

Numerical Analysis of the Flow in a Compliant Tube Considering Fluid-wall Interaction (벽-유체의 상호작용을 고려한 유연관 내부 유동의 수치적 연구)

  • 심은보
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.391-401
    • /
    • 2000
  • Flow through compliant tubes with linear taper in wall thickness is numerically simulated by finite element analysis. For verification of the numerical method, flow through a compliant stenotic vessel is simulated and the results are compared to the existing experimental data. Steady two-dimensional flow in a collapsible channel with initial tension is also simulated and the results are compared with numerical solutions from the literature. Computational results show that as cross-sectional area decreases with the reduction in downstream pressure, flow rate increases and reaches the maximum when the speed index (mean velocity divided by wave speed) is near the unity at the point of minimum cross-section area, indicating the flow limitation or choking (flow speed equals wave speed) in one-dimensional studies. for further reductions in downstream pressure, flow rate decreases. The flow limitation or choking consist of the main reasons of waterfall effect which occurs in the airways, capillaries of lung, and other veins. Cross-sectional narrowing is significant but localized. When the ratio of downstream-to-upstream wall thickness is 2, the area throat is located near the downstream end. As this ratio is increased to 3, the constriction moves to the upstream end of the tube.

  • PDF

Histopathological and Neurobehavioral Characterization in Adult Mice Exposed to Traumatic Brain Injury (C57BL/6 쥐 외상성 뇌손상 모델에서 뇌 손상 정도에 따른 조직병리학적 변화 및 신경행동학적 특징)

  • Oh, Ki Young;Choi, Dong Won;Jang, Moon Soon;Lee, Ji Han;Kim, Sang Chul;Park, Jung Soo;Lee, Suk Woo;Kim, Hoon
    • Journal of The Korean Society of Emergency Medicine
    • /
    • v.28 no.5
    • /
    • pp.457-466
    • /
    • 2017
  • Purpose: Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide. Severity of the initial insult is one of the most significant factors affecting outcome following TBI. In order to investigate the mechanisms of cellular injury and develop novel therapeutic strategies for TBI, we designed a standardized animal TBI model and evaluated histological and functional outcomes according to the degree of impact severity. Methods: Male adult C57Bl/6 mice underwent controlled cortical impact (CCI) at varying depths of deflection (1.0-2.0 mm). We performed hematoxylin and eosin staining at 7 days after recovery from TBI. Neurobehavioral characterization after TBI was analyzed by the Barnes maze test, passive avoidance test, open field test, rotarod test, tail suspension test, and light/dark test. Results: We observed a graded injury response according to the degree of deflection depths tested (diameter, 3 mm; velocity, 3 m/s; and duration, 500 ms) compared to sham controls. In the Barnes maze test, the severe TBI (2 mm depth) group showed reduced spatial memory as compared with the sham and mild TBI (1 mm depth) groups at 7 days after TBI. There was a significant difference in the results of the open field test and light/dark test among the three groups. Conclusion: Our findings demonstrate that the graded injury responses following TBI resulted in differential histopathological and behavioral outcomes in a mouse experimental CCI model. Thus, a model of CCI with histologic/behavioral outcome analysis may offer a reliable and convenient design for preclinical TBI research involving mice.

Uncoupled Solution Approach for treating Fluid-Structure Interaction due to the Near-field Underwater Explosion (근거리 수중폭발에 따른 유체-구조 상호작용 취급을 위한 비연성 해석방법)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.125-132
    • /
    • 2019
  • Because the water exposed to shock waves caused by an underwater explosion cannot withstand the appreciable tension induced by the change in both pressure and velocity, the surrounding water is cavitated. This cavitating water changes the transferring circumstance of the shock loading. Three phenomena contribute to hull-plate damage; initial shock loading and its interaction with the hull plate, local cavitation, and local cavitation closure then shock reloading. Because the main concern of this paper is local cavitation due to a near-field underwater explosion, the water surface and the waves reflected from the sea bottom were not considered. A set of governing equations for the structure and the fluid were derived. A simple one-dimensional infinite plate problem was considered to verify this uncoupled solution approach compared with the analytic solution, which is well known in this area of interest. The uncoupled solution approach herein would be useful for obtaining a relatively high level of accuracy despite its simplicity and high computational efficiency compared to the conventional coupled method. This paper will help improve the understanding of fluid-structure interaction phenomena and provide a schematic explanation of the practical problem.

A simple approach to refraction statics with the Generalized Reciprocal Method and the Refraction Convolution Section (GRM과 RCS 방법을 이용한 굴절파 정적 시간차를 구하는 간단한 방법)

  • Palmer Derecke;Jones Leonie
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.18-25
    • /
    • 2005
  • We derive refraction statics for seismic data recorded in a hard rock terrain, in which there are large and rapid variations in the depth of weathering. The statics corrections range from less than 10 ms to more than 70 ms, often over distances as short as 12 receiver intervals. This study is another demonstration of the importance in obtaining accurate initial refraction models of the weathering in hard rock terrains in which automatic residual statics may fail. We show that the statics values computed with a simple model of the weathering using the Generalized Reciprocal Method (GRM) and the Refraction Convolution Section (RCS) are comparable in accuracy to those computed with a more complex model of the weathering, using least-mean-squares inversion with the conjugate gradient algorithm (Taner et al., 1998). The differences in statics values between the GRM model and that of Taner et al. (1998) systematically vary from an average of 2ms to 4ms over a distance of 8.8 km. The differences between these two refraction models and the final statics model, which includes the automatic residual values, are generally less than 5 ms. The residuals for the GRM model are frequently less than those for the model of Taner et al. (1998). The RCS statics are picked approximately 10 ms later, but their relative accuracy is comparable to that of the GRM statics. The residual statics values show a general correlation with the refraction statics values, and they can be reduced in magnitude by using a lower average seismic velocity in the weathering. These results suggest that inaccurate average seismic velocities in the weathered layer may often be a source of short-wavelength statics, rather than any shortcomings with the inversion algorithms in determining averaged delay times from the traveltimes.

Numerical Analysis on the Turbulence Patterns in The Scour Hole at The Downstream of Bed Protection (하상보호공 직하류부 세굴공의 난류양상에 관한 수치해석적 연구)

  • Lee, Jaelyong;Park, Sung Won;Yeom, Seongil;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.20-26
    • /
    • 2019
  • Where hydraulic structures are to be installed over the entire width of a river or stream, usually a bed protection structure is to be installed. However, a local scour occurs in which the river bed downstream of the river protection system is eroded due to the influence of the upstream flow characteristics. This local scour is dominant in the flow and turbulence characteristics at the boundary of the flow direction and in the material of the bed materials, and may gradually become dangerous over time. Therefore, in this study, we compared the turbulence patterns in the local scour hole at the downstream of the river bed protection with the results of the analysis of the mobile bed experiment, and compared with the application of OpenFoam, a three dimensional numerical analysis model. The distribution of depth-averaged relative turbulence intensities along the flow direction was analyzed. In addition to this result, the stabilization of scour hole was compared with the bed shear stress and Shields parameter, and the results were compared by changing the initial turbulent flow conditions. From the results, it was confirmed that the maximum depth of generation of the three-stage was dominantly developed by the magnitude of depth-averaged relative turbulence intensity rather than the mean flow velocity. This result also suggests that design, construction or gate control are needed to control the depth-averaged relative turbulence intensities in order to reduce or prevent the local scour faults that may occur in the downstream part of the bed protection.

CFD Simulations of the Trees' Effects on the Reduction of Fine Particles (PM2.5): Targeted at the Gammandong Area in Busan (수목의 초미세먼지(PM2.5) 저감 효과에 대한 CFD 수치 모의: 부산 감만동 지역을 대상으로)

  • Han, Sangcheol;Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.851-861
    • /
    • 2022
  • In this study, we analyzed the effects of trees planted in urban areas on PM2.5 reduction using a computational fluid dynamics (CFD) model. For realistic numerical simulations, the meteorological components(e.g., wind velocity components and air temperatures) predicted by the local data assimilation and prediction system (LDAPS), an operational model of the Korea Meteorological Administration, were used as the initial and boundary conditions of the CFD model. The CFD model was validated against, the PM2.5 concentrations measured by the sensor networks. To investigate the effects of trees on the PM2.5 reduction, we conducted the numerical simulations for three configurations of the buildings and trees: i) no tree (NT), ii) trees with only drag effect (TD), and iii) trees with the drag and dry-deposition effects (DD). The results showed that the trees in the target area significantly reduced the PM2.5 concentrations via the dry-deposition process. The PM2.5 concentration averaged over the domain in DD was reduced by 5.7 ㎍ m-3 compared to that in TD.

Effects of Dynamic Tubing Gait Training on Postural Alignment, Gait, and Quality of Life in Chronic Patients with Parkinson's Disease : Case Study (동적탄력튜빙 보행훈련 프로그램이 만성 파킨슨병 환자의 자세정렬과 보행능력과 삶의 질에 미치는 영향 : 사례연구)

  • Lee, Dong-Ryul
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.8
    • /
    • pp.363-377
    • /
    • 2021
  • The present study investigated the effects of dynamic tubing gait training(I and II) on the postural alignment, gait, and quality of life in chronic patients with Parkinson's disease. This study is based on the case study that recruited a total of 3 patients with chronic Parkinson's disease (Hoehn and Yahr Stage of 1 to 3 each one person). Dynamic tubing gait training (I and II) applied to chronic patients with Parkinson's disease for 25 sessions, 30 minutes a day, 5 days a week, over 5 weeks period. To investigate the effects of this study, evaluating using the postural alignment test, muscle activity tests, gait analysis, and quality of life scale for patient with Parkinson's disease. After the intervention of Dynamic tubing gait training (I and II), Trunk flexion was decreased. Also, during walking from initial contact (IC) to mid stance (Mst), muscle activity of Quadriceps, Hamstring, and Tibialis Anterior (TA) was increased and muscle activity of Gastrocnemius was decreased. The muscle activation of Erector Spinae (ES T12, L3) was increased in the H&Y I and III stages and decreased in the H&Y II stage. Length of gait line, single support line, ant/post position and lateral symmetry of center of pressure (COP) parameters improved. The spatio-temporal gait parameters including of step length, stride length, and velocity was increased, and cadence decreased. Further the quality of life of patients with Parkinson's disease was improved. Based on these findings, Dynamic tubing gait training (I and II) could be applied as a new approach to improve posture, gait, quality of life in chronic patients with Parkinson's disease for more than 5 years, whose drug resistance is halved.