• Title/Summary/Keyword: Initial Tension Force

Search Result 98, Processing Time 0.028 seconds

Back Analysis for Estimating Tension Force on Hanger Cables (역해석기법을 이용한 현수교 행어케이블 장력 추정)

  • Kim, Nam-Sik;Bin, Jung-Min;Chang, Sung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.894-901
    • /
    • 2006
  • In general, the tension fores of hanger cable in suspension bridges play an important role in evaluating the bridge state. The vibration method, as a conventional one, has been widely applied to estimate the tension fores by using the measured frequencies on hanger cables. However, the vibration method is not applicable to short hanger cables because the frequency of short cables is severely sensitive to the flexural rigidity. Thus, in this study, the tension forces of short hanger cables, of which the length is shorter than 10meters, were estimated through back analysis of the cable frequencies measured from Gwang-An suspension bridge in Korea. Direct approach to rock analysis is adopted using the univariate method among the direct search methods as an optimization technique. The univariate method is able to search the optimal tension forces without regard to the initial ones and has a rapid convergence rate. To verify the feasibility of back analysis, the results from back analysis and vibration method are compared with the design tension forces. From the comparison, it can be inferred that back analysis results are more reasonable agreement with the design tension forces of short hanger cable. Therefore, it is concluded that back analysis applied in this study is an appropriate tool for estimating tension forces of short hanger cables.

  • PDF

Maintenance And Reinforcement Design Of Olympic fencing Stadium (올림픽 펜싱경기장의 보수.보강설계)

  • HwangBo, Suk;Yoon, Kwang-Jae;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.108-115
    • /
    • 2005
  • Maintenance and reinforcement are very important especially in the case of the hybrid structures. In this paper, we introduce the maintenance and reinforcement design method of cable dome structures. In the case of the Olympic fencing stadium structural system has the stiffness in dependence of the initial tension force. Therefore, the verification of this phenomenon is very important. The result shows that the final tension force which is measured is almost reached to the calculated aim tension force after the maintenance ana reinforcement works is confirmed.

  • PDF

The Force of Articulation for Three Different Types of Korean Stop Consonants

  • Kim, Hyun-Gi
    • Speech Sciences
    • /
    • v.11 no.1
    • /
    • pp.65-72
    • /
    • 2004
  • The force of articulation is different between voiced and voiceless consonants in the binary opposition system. However, the Korean voiceless stop consonants have a triple opposition system: lenis, aspirated, and glottalized. The aim of this study is to find the primary distinctive feature between the force of articulation and the aspiration for the three different types of Korean stops. Two native speakers of the Seoul dialect participated to this study. The corpus was composed of less than eight syllabic words containing consonants in word-initial position and intervocalic position. Radiocinematography and Mingography were used to analyze the articulatory tension and acoustic characteristics. Korean stops have independent features of articulatory tension and aspiration, in which the indices are different according to position. However, in this system which does not have the opposition of sonority, the force of articulation is the primary distinctive feature and the feature of aspiration is subsidiary.

  • PDF

Force density ratios of flexible borders to membrane in tension fabric structures

  • Asadi, H.;Hariri-Ardebili, M.A.;Mirtaheri, M.;Zandi, A.P.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.555-563
    • /
    • 2018
  • Architectural fabrics membranes have not only the structural performance but also act as an efficient cladding to cover large areas. Because of the direct relationship between form and force distribution in tension membrane structures, form-finding procedure is an important issue. Ideally, once the optimal form is found, a uniform pre-stressing is applied to the fabric which takes the form of a minimal surface. The force density method is one of the most efficient computational form-finding techniques to solve the initial equilibrium equations. In this method, the force density ratios of the borders to the membrane is the main parameter for shape-finding. In fact, the shape is evolved and improved with the help of the stress state that is combined with the desired boundary conditions. This paper is evaluated the optimum amount of this ratio considering the curvature of the flexible boarders for structural configurations, i.e., hypar and conic membranes. Results of this study can be used (in the absence of the guidelines) for the fast and optimal design of fabric structures.

Estimation of Tension Forces of Assembly Stay Cables Connected with Massive Anchorage Block (중량 앵커리지 블록과 연결된 조립 스테이 케이블의 장력 추정)

  • Jeong, Woon;Kim, Nam-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.346-353
    • /
    • 2005
  • In this paper, the tension of assembly stay cable connected with massive anchorage block was calculated through back analysis of in-situ frequencies measured from a stadium structure. Direct approach to back analysis is adopted using the univariate method among the direct search methods as an optimization technique. The univariate method can search the optimal tension without regard to the initial ones and has a rapid convergence rate. To verify the reliability of back analysis, Tension formulas proposed by Zui et al. and Shimada were used. Tensions estimated by three methods are compared with the design tension, and are in a reasonable agreement with an error of more or less than 15%. Therefore, it is shown that back analysis applied in this paper is appropriate for estimation of cable tension force.

Estimation of Tension Forces of Assembly Stay Cables Connected with Massive Anchorage Block (중량 앵커리지 블록과 연결된 조립 스테이 케이블의 장력 추정)

  • Jeong, Woon;Kim, Nam-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.435-440
    • /
    • 2004
  • In this paper, the tension of assembly stay cable connected with massive anchorage block was calculated through back analysis of in-situ frequencies measured from a stadium structure. Direct approach to back analysis is adopted using the univariate method among the direct search methods as an optimization technique. The univariate method can search the optimal tension without regard to the initial ones and has a rapid convergence rate. To verify the reliability of back analysis, Tension formulas proposed by Zui et al. and Shimada were used. Tensions estimated by three methods are compared with the design tension, and are in a reasonable agreement with an error of more or less than 15%. Therefore, it is shown that back analysis applied in this paper is appropriate for estimation of cable tension force.

  • PDF

The Experimental Study on the Bond behavior of High strength concrete (고강도 콘크리트의 부착거동에 관한 실험적 연구)

  • Lee, Joon-Gu;Kim, Woo;Park, Kwang-Su;Kim, Dae-Joung;Lee, Wong-Chan;Kim, Han-Joung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.774-780
    • /
    • 1999
  • The study of bond behavior between concrete and rebar has been performed for a long time. On this study, we tried to analysed variation of bond behaviors quantitatively with varying the strength of concrete. Bond stress which observed below the neutral surface of beam and at connecting part of beam and column is affected by various bond parameters. Resistance of deformed bars which embedded in concrete to the pullout force is divided 1) chemical adhesive force 2) frictional force 3) mechanical resistance of ribs to the concrete and these horizontal components of resistance is being bond strength. We selected the most common and typical variable which is concrete strength among various variables. So we used two kinds of concrete strength like as 25MPa(NSC) and 65MPa(HSC). Tension Test was performed to verify how bond behavior varied with two kinds of concrete strength. Concentration of bond stress was observed at load-end commonly in Tension Test of the initial load stage. At this stage stress distribution was almost coincident at each strength. As tension load added, this stress distribution had difference gradually and movement of pick point of bond stress to free-end and central section was observed. This tendency was observed at first and moving speed was more fast in NSC. At the preceeding result the reason of this phenomenon is considered to discretion of chemical adhesion and local failure of concrete around rebar in load-end direction. Especially, when concrete strength was increased 2.6 times in tension test, ultimate bond strength was increased 1.45 times. In most recent used building codes, bond strength is proportioned to sqare root of concrete compressive strength but comparison of normalized ultimate bond strength was considered that the higher concrete strength is, the lower safety factor of bond strength is in each strength if we use existing building codes. In Tension Test, in case of initial tensile force state, steel tensile stress of central cross section is not different greatly at each strength but tensile force increasing, that of central cross section in NSC was increased remarkably. Namely, tensile force which was shared in concrete in HSC was far greater than that of concrete in NSC at central section.

  • PDF

A Study on Vibrational Characteristics of Piping Systems in Petrochemical Plants Considering the Fluid Velocity and Pressure (유체의 속도와 압력을 고려한 석유화학 플랜트 배관계의 진동특성에 대한 연구)

  • Kim, Kyoung-Hoon;Kim, Jeong-Hoon;Choi, Myung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1053-1060
    • /
    • 2006
  • This paper consider an initially deformed state caused by the pressurized fluid flowing through the pipe at a constant velocity. When the initial forte is neglected in curved pipes, the natural frequencies are reduced as flow velocity increases. However, when the initial tension took into account, the natural frequencies are not changed with the change of the flow velocity. As the internal pipe pressure is increased the natural frequencies are also slightly increased. In free vibrational simulation of piping systems in petrochemical plants, it is necessary to calculate the initial state force due to the velocity and the pressure of the fluid flow from the equilibrium first, then the force should be included in the equation of motion of the systems to get more accurate natural frequencies. In this study, calculate the mass matrix and stiffness matrix of piping system by MATLAB

  • PDF

Effects of Curved Pipe Geometry and Inside Fluid Flow on the Vibrational Characteristics of Pipe Systems (배관의 형상 및 내부유체 유동이 배관계의 진동특성에 미치는 영향)

  • Choi, Myung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.58-64
    • /
    • 2016
  • Vibrational characteristics of curved pipe structures are investigated with respect to the change of inside flow velocities. Based upon the Hamilton's principle, the equations of motions are derived, and the finite element equation is constructed to solve the frequency equation for curved pipe structures. When the initial tension is neglected in cured pipes, the natural frequencies are reduced as flow velocity increases, and the rapid decreases of the natural frequencies take place. However, when the initial tension is taken into account, the natural frequencies are not changed with the change of the flow velocity. In free vibrational simulation of pipe systems, it is necessary to calculate the initial force due to the velocity and the pressure of the fluid flow from the equilibrium. The force should be included in the equation of motion of the systems to get more accurate natural frequencies. The mechanical properties like stiffness or the location of pipe support need to be changed to avoid resonance. The natural frequencies are to be isolated from the frequency range of dominant vibration modes. The angles of elbows do not affect the change of the fundamental natural frequency, but affect the change of the third or higher natural frequencies.

Effects by the Magnitude of Shear Load on the Formation and Propagation of Mode II Branch Cracks (전단하중의 크기가 모드 II 분기균열의 형성과 전파에 미치는 영향)

  • 이정무;송삼홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.487-490
    • /
    • 2004
  • In this paper, we investigated the characteristics of initiation and propagation behavior for fatigue crack observed by changing various shapes of initial crack and magnitudes of loading in modified compact tension shear(CTS) specimen subjected to shear loading. In the low-loading condition, the secondary fatigue crack was created in the notch root due to friction on the pre-crack face grew to a main crack. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Influenced by the shear loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. The propagation path of fatigue crack under the Mode II loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF