• Title/Summary/Keyword: Initial Strain Method

Search Result 320, Processing Time 0.025 seconds

Anisotropic Elasto-Viscoplastic Finite Element Analysis for Polycrystalline Materials (다결정재의 이방성 탄.점소성 유한요소해석)

  • 이용신;김응주
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.71-76
    • /
    • 1997
  • The deformations of polycrystalline materials are modelled by linking a constitutive equation for the crystallographic slip of a single crystal to the macroscopic behavior of the aggregate. In this study, anisotropic elasticity (lattice stretching) of a cubic crystal is incoporated into the anisotropic plasticity from crystallographic slip. The constitutive description for the aggregate, derived from a crystal plasticity theory, is used to formulate a Consistent Penalty Finite Element Method for the anisotropic elasto-viscoplastic deformation of polycrystalline materials. As an application, a plane-strain forging process is simulated and the effects of the initial textures on the deformation behavior of the workpiece are examined.

  • PDF

Creep Life Prediction of Aircraft Gas Turbine Material by ISM (ISM에 의한 항공기용 가스터빈 재료의 크리프 수명예측)

  • 공유식;오세규;윤한기
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.108-113
    • /
    • 2001
  • In this paper, the real-time prediction of high temperature creep strength and creep strength and creep life for nickel-based superalloy Udimet 720 (high-temperature and high-pressure gas turbine engine materials) was performed on round-bar type specimens under pure load at the temperatures of 538, 649 and 704$^{\circ}C$. The predictive equation of ISM creep has better reliability than that of LMP and LMP-ISM, and its reliability is getting better for long time creep prediction(10$^3$~10sup/5/h).

  • PDF

Friction Welding of Dissimilar Hot Die Punch materials and Its Creep Life Prediction(II)-Creep Life Prediction by ISM (열간 금형재의 이종재 마찰용접과 크리프 수명예측 (II) -크리프 수명예측)

  • 박일동;공유식;오세규;전태언
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.53-60
    • /
    • 2001
  • It was confirmed that the life predictive equation by LMP and LMP-ISM are effective only up to 10$^2$hours and can not be used for long times of $10^3~10^5$ hours, but that by ISM can be used for long times creep life prediction with more reliability. The predictive creep life equation of ISM has better reliability than those by LMP and LMP-ISM, and its realizably is getting better for long time creep prediction($10^3~10^5$ h).

  • PDF

A Process Design for Hot-Forging of a Titanium-6242 Disk (티타늄-6242 디스크의 열간단조를 위한 공정설계)

  • 박종진
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.271-281
    • /
    • 1994
  • Titanium-6242 $({\alpha}+{\beta})$ alloy has been used for aircraft engine components such as disks and blades, because it has an excellent strength/weight ratio at high temperatures. When this material is forged to manufacture disks, process parameters should be carefully designed to control strain and temperature distributions within the process windows by which desirable mechanical properties can be produced. In the present investigation, it was intended to design the process parameters for a conventional hot forging of this material by using a rigid-thermoviscoplastic finite element analysis technique. It was assumed that the process was performed by a screw press which is capable of maintaining a constant ram speed during loading. From the analysis results, it was found out that the initial temperature of the workpiece and the die shape were important parameters to control the forging process. In result, these parameters were properly designed for hot forging of a disk with specific dimensions.

  • PDF

A Study on the Improvement of Forming Processes of Valve-Spring Retainer (Valve-Spring Retainer의 성형공정개선에 관한 연구)

  • 오현석;황병복;이호용
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.145-155
    • /
    • 1996
  • The conventional five-stage forming processes of the valve-spring retainer are simulated using the rigid-plstiv finite element method. As a design criterion the improved process should satisfy the maximum forging load during processes within the loading limit of the available press and should not induce any geometrical defects. hollow bars are recommended as initial billets to skip the heading and piercing processes. Through various simulations it is found out that the one stage process results in less forging loads and better strain distributions.

  • PDF

Finite Element Analysis on the Effect of Die Corner Angle in Equal Channel Angular Pressing Process of Powders (분말 ECAP 공정에 미치는 금형 모서리각 효과에 대한 유한요소해석)

  • Yoon, Seung-Chae;Bok, Cheon-Hee;Quang, Pham;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.26-31
    • /
    • 2007
  • Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy of compaction and sintering. In this study, bottom-up type powder metallurgy processing and top-down type SPD (Severe Plastic Deformation) approaches were combined in order to achieve both real density and grain refinement of metallic powders. ECAP (Equal Channel Angular Pressing), one of the most promising processes in SPD, was used for the powder consolidation method. For understanding the ECAP process, investigating the powder density as well as internal stress, strain distribution is crucial. We investigated the consolidation and plastic deformation of the metallic powders during ECAP using the finite element simulations. Almost independent behavior of powder densification in the entry channel and shear deformation in the main deformation zone was found by the finite element method. Effects of processing parameters on densification and density distributions were investigated.

Study on Structural Performance of Two Seam Cold-Formed Square CFT Column to Beam Connections with Internal Diaphragm (2-Seam 냉간성형 각형 CFT 기둥-보 내다이아프램 접합부의 구조성능에 관한 연구)

  • Oh, Heon-Keun;Kim, Sun-Hee;Choi, Young-Hwan;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.27-37
    • /
    • 2012
  • The construction of a moment connection for a rectangular hollow section (RHS) column and a H-shaped beam is difficult because the RHS is a closed section. When a inner diaphragm is used for such a connection, in general, it is installed after cutting the HSS columns, which results in increased construction work. This paper suggests a new fabrication method to overcome such problems: An inner diaphragm is welded to inside a C-shaped section first, and then a column is fabricated by welding two C-shaped sections. This fabrication method is superior to a classic method in terms of constructibility. An experimental and a numerical study using Ansys 9.0 were performed in order to compare the strength of connections with respect to the presence of concrete, the corner shape of diaphragm, and the axis of loading. The experimental results including initial stiffness and ultimate loads are reported and the analytical results including load transfer mechanism, degree of stress concentration, and strain distribution are also reported.

A finite strip method for elasto-plastic analysis of thin-walled structures under pure bending

  • Cheung, M.S.;Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.233-242
    • /
    • 1999
  • In the present study, the elasto-plastic analysis of prismatic plate structures subjected to pure bending is carried out using the finite strip method. The end cross-sections of the structure are assumed to remain plane during deformation, and the compatibility along corner lines is ensured by choosing proper displacement functions. The effects of both the initial geometrical imperfections and residual stresses due to fabrication are included in the combined geometrically and materially nonlinear simulation. The von-Mises yield criterion and the Prandtl-Reuss flow theory of plasticity are applied in modelling the elasto-plastic behavior of material. Newton-Raphson iterations are carried out as the rotation of the end cross sections of the structure is increased step by step. The parameter representing the overall axial strain of structure is adjusted constantly during the iteration process in order to eliminate the resulting overall axial force on any cross-section of the structure in correspondence with the assumption of zero axial force in pure bending. Several numerical examples are presented to validate the present method and to investigate the effects of some material and geometrical parameters.

Two-dimensional concrete meso-modeling research based on pixel matrix and skeleton theory

  • Jingwei Ying;Yujun Jian;Jianzhuang Xiao
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.671-688
    • /
    • 2024
  • The modeling efficiency of concrete meso-models close to real concrete is one of the important issues that limit the accuracy of mechanical simulation. In order to improve the modeling efficiency and the closeness of the numerical aggregate shape to the real aggregate, this paper proposes a method for generating a two-dimensional concrete meso-model based on pixel matrix and skeleton theory. First, initial concrete model (a container for placing aggregate) is generated using pixel matrix. Then, the skeleton curve of the residual space that is the model after excluding the existing aggregate is obtained using a thinning algorithm. Finally, the final model is obtained by placing the aggregate according to the curve branching points. Compared with the traditional Monte Carlo placement method, the proposed method greatly reduces the number of overlaps between aggregates by up to 95%, and the placement efficiency does not significantly decrease with increasing aggregate content. The model developed is close to the actual concrete experiments in terms of aggregate gradation, aspect ratio, asymmetry, concavity and convexity, and old-new mortar ratio, cracking form, and stress-strain curve. In addition, the cracking loss process of concrete under uniaxial compression was explained at the mesoscale.

Experimental Study on the Ultimate Strength of Composite Cylinders under Hydrostatic Pressure (수압을 받는 복합재 원통의 최종강도 실험 연구)

  • Cho, Sang-Rai;Koo, Jeong-Bon;Cho, Jong-Rae;Kwon, Jin-Hwe;Choi, Jin-Ho;Kim, Hyun-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.52-57
    • /
    • 2007
  • Composite material is one of the strongest candidates for deep see pressure hulls. Research regarding composite cylinders, subjected to hydrostatic pressure, has been ongoing for a couple of decades, abroad, but domestic research is very new. Experimental investigations seem necessary, in order to understand their structural behavior not only up to the ultimate limit state, but in the post-ultimate regime. That experimental information will be very helpful in the development of any theoretical methods or to substantiate any commercial numerical packages for structural analyses. In this study, ultimate strength tests on seven composite cylinders subjected to hydrostatic pressure are reported, which includes the fabrication method of models, mechanical properties of the material, initial shape imperfection measurements, test procedure, and strain and axial shortening measurements during the tests. The ultimate strengths of the models were compared with predictions of numerical analyses. The numerical predictions are higher than the test results. It seems necessary to improve the accuracy of the numerical predictions by considering the initial shape and material imperfections.