• Title/Summary/Keyword: Initial Strain

Search Result 1,361, Processing Time 0.026 seconds

Collapse Analysis of Ultimate Strength Considering the Heat Affected Zone of an Aluminum Stiffened Plate in a Catamaran (카타마란 알루미늄 보강판의 열영향부 효과를 고려한 최종강도 붕괴 해석)

  • Kim, Sung-Jun;Seo, Kwang-Cheol;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.542-550
    • /
    • 2020
  • The use of high-strength aluminum alloys for ships and of shore structures has many benefits compared to carbon steels. Recently, high-strength aluminum alloys have been widely used in onshore and of shore industries, and they are widely used for the side shell structures of special-purpose ships. Their use in box girders of bridge structures and in the topside of fixed platforms is also becoming more widespread. Use of aluminum material can reduce fuel consumption by reducing the weight of the composite material through a weight composition ratio of 1/3 compared to carbon steel. The characteristics of the stress strain relationship of an aluminum structure are quite different from those of a steel structure, because of the influence of the welding[process heat affected zone (HAZ). The HAZ of aluminum is much wider than that of steel owing to its higher heat conductivity. In this study, by considering the HAZ generated by metal insert gas (MIG) welding, the buckling and final strength characteristics of an aluminum reinforcing plate against longitudinal compression loads were analyzed. MIG welding reduces both the buckling and ultimate strength, and the energy dissipation rate after initial yielding is high in the range of the HAZ being 15 mm, and then the difference is small when HAZ being 25 mm or more. Therefore, it is important to review and analyze the influence of the HAZ to estimate the structural behavior of the stiffened plate to which the aluminum alloy material is applied.

Probabilistic fatigue assessment of rib-to-deck joints using thickened edge U-ribs

  • Heng, Junlin;Zheng, Kaifeng;Kaewunruen, Sakdirat;Zhu, Jin;Baniotopoulos, Charalampos
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.799-813
    • /
    • 2020
  • Fatigue cracks of rib-to-deck (RD) joints have been frequently observed in the orthotropic steel decks (OSD) using conventional U-ribs (CU). Thickened edge U-rib (TEU) is proposed to enhance the fatigue strength of RD joints, and its effectiveness has been proved through fatigue tests. In-depth full-scale tests are further carried out to investigate both the fatigue strength and fractography of RD joints. Based on the test result, the mean fatigue strength of TEU specimens is 21% and 17% higher than that of CU specimens in terms of nominal and hot spot stress, respectively. Meanwhile, the development of fatigue cracks has been measured using the strain gauges installed along the welded joint. It is found that such the crack remains almost in semi-elliptical shape during the initiation and propagation. For the further application of TEUs, the design curve under the specific survival rate is required for the RD joints using TEUs. Since the fatigue strength of welded joints is highly scattered, the design curves derived by using the limited test data only are not reliable enough to be used as the reference. On this ground, an experiment-numerical hybrid approach is employed. Basing on the fatigue test, a probabilistic assessment model has been established to predict the fatigue strength of RD joints. In the model, the randomness in material properties, initial flaws and local geometries has been taken into consideration. The multiple-site initiation and coalescence of fatigue cracks are also considered to improve the accuracy. Validation of the model has been rigorously conducted using the test data. By extending the validated model, large-scale databases of fatigue life could be generated in a short period. Through the regression analysis on the generated database, design curves of the RD joint have been derived under the 95% survival rate. As the result, FAT 85 and FAT 110 curves with the power index m of 2.89 are recommended in the fatigue evaluation on the RD joint using TEUs in terms of nominal stress and hot spot stress respectively. Meanwhile, FAT 70 and FAT 90 curves with m of 2.92 are suggested in the evaluation on the RD joint using CUs in terms of nominal stress and hot spot stress, respectively.

Isolation and Characterization of Kimchi Lactic Acid Bacteria Showing Anti-Helicobacter pylori Activity (Helicobacter pylori 억제능 김치 유산균의 분리와 특성 규명)

  • Lee, Youl;Chang, Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.2
    • /
    • pp.106-114
    • /
    • 2008
  • One bacterium, which showed strong antagonistic activity against H. pylori KCCM 41756, was isolated from kimchi. The strain NO1 was designated as Lactobacillus plantarum NO1 based on Gram staining, biochemical properties, and 16S rRNA gene sequencing. The culture medium $(2{\sim}4{\mu}g/ml)$ of Lb. plantarum NO1 reduced $(40{\sim}60%)$ the urease activity of H. pylori KCCM 41756. Lb. plantarum NO1 inhibited the binding of H. pylori to human gastric cancer cell line, AGS cells, by more than 33%. Lb. plantarum NO1 exhibited high viability (maintained initial viable cell count of $10^9CFU/ml$) in 0.05 M sodium phosphate buffer (pH 3.0) for 2 h, in artificial gastricjuice for 2 h and in 0.3%, 0.5% oxgall for 24 h. Hemolysis phenomena did not observed when Lb. plantarum NO1 was incubated in the blood agar media. We concluded that Lb. plantarum NO1 can be a good candidate as a probiotic, harboring anti-H. pylori activity.

Coupled Finite Element Analysis of Partially Saturated Soil Slope Stability (유한요소 연계해석을 이용한 불포화 토사사면 안전성 평가)

  • Kim, Jae-Hong;Lim, Jae-Seong;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.35-45
    • /
    • 2014
  • Limit equilibrium methods of slope stability analysis have been widely adopted mainly due to their simplicity and applicability. However, the conventional methods may not give reliable and convincing results for various geological conditions such as nonhomogeneous and anisotropic soils. Also, they do not take into account soil slope history nor the initial state of stress, for example excavation or fill placement. In contrast to the limit equilibrium analysis, the analysis of deformation and stress distribution by finite element method can deal with the complex loading sequence and the growth of inelastic zone with time. This paper proposes a technique to determine the critical slip surface as well as to calculate the factor of safety for shallow failure on partially saturated soil slope. Based on the effective stress field in finite element analysis, all stresses are estimated at each Gaussian point of elements. The search strategy for a noncircular critical slip surface along weak points is appropriate for rainfall-induced shallow slope failure. The change of unit weight by seepage force has an effect on the horizontal and vertical displacements on the soil slope. The Drucker-Prager failure criterion was adopted for stress-strain relation to calculate coupling hydraulic and mechanical behavior of the partially saturated soil slope.

Environmental Factors Related to Mass Moralities of Young Red Seabream (Pagrus major) in the Artificial Seed Production (일본산 참돔, Pagrus major 종묘생산과정중 사육수 변화로 인한 대량폐사)

  • 최상덕;정관식;김호진;김성수
    • Journal of Aquaculture
    • /
    • v.11 no.2
    • /
    • pp.203-212
    • /
    • 1998
  • As seed production program is growing prosperously in various fishes in southern Korea, disease problems in larval and juvenile stages have emerged as a new research object. The following results were obtained from investigation about environmental factors related to mass mortalities of young Kinki red seabream, Pagrus major in process of artificial seedling production. Total length of red seabream larvae hatched was 2.93mm, and became 18.83~20.12mm at day 40. The first noticeable mortality of red seabream larvae (7.98~9.37mm) occurred in 25~30 day-old fish with the survival rates of 59.8~60.3%. Thereafter the mortality of larvae decreased, survival rate was 20.5~25.45% in day 40. After 20~30 days, the quality of pond water was bellow II class. During the experimental period COD, $PO_4$-P, $NO_2$-N, $NO_3$-N and $NH_$-N increased up to 3, 7, 34, 6 and 8 times, respectively, compared to initial ones. The number of viable bacteria in pond water and seabream larvae were $6.3{\times}10^6$~$2.3{\times}10^7$ cfu/ml, 4.3~$7.4{\times}10^6$ cfu/g in day 25, respectively. Among the isolated bacteria from the diseased red seabream in day 25, Vibrio spp. was considered to be the causative organism. External symptoms of this disease were floated, spined near the surface and inflated abdomen. When the isolated strain of the Vibrio was bathed to seabream larvae, $LD_50$ of seabream larvae was over $10^6$ cfu/ml of Vibrio spp.

  • PDF

FLEXURE STRENGTH OF CAST-JOINED CONNECTOR WITH Ni-Cr-Be ALLOY (주조연결된 니켈-크롬-베릴리움 주조체의 굽힘강도에 관한 비교연구)

  • Jeong, Chang-Mo;Jeon, Young-Chan;Lim, Jang-Seop
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.6
    • /
    • pp.858-866
    • /
    • 1998
  • Soldering is the usual method used to correct an unstable fixed partial denture framework at patient's try-in; However, presoldering base metal alloys is technique-sensitve and results are unstable because it is difficult to maintain uniform heat distribution and to prevent oxidation of an alloy. A cast-joining technique has been developed by Weiss and Munyon for repair, correction and addition to base metal framework. This joining technique eliminates the problem with presoldering of non-precious frameworks. The object of this study was to 1) compare the relative flexure strength and the joining effectiveness of Ni-Cr-Be cast in two pieces and 'pre-soldered' versus in two pieces and 'cast-joined'. 2) determine the effect of increasing the number of retentive grooves on the face of the cast and 3) determine the effect of the relative matched position of groove patterns on flexure strength. The joining effectiveness can be expressed by the ratio of the mean flexure stress of soldered or cast-joined specimens to that of one-piece cast. Resin rods 3mm in diameter were used as pattern of specimens for one-piece casted, presoldered, and cast-joined groups. Cast-joined specimens had two different patterns of retentive grooves on the joined faces. Type A had cross-shaped grooves 1mm in depth. 0.6mm in width. Type B was the same except for the addition of one more retentive groove. In the experiment connecting cast-joined specimens, half of specimens with type A pattern had their patterns on the faces of paired casts matched with each other as mirror image. With the rest pairs, it was proceeded that one of paired casts turned 45 degrees so that the patterns crossed. Half of specimens with type B pattern also had the patterns matched as mirror image; However, here, one of paired casts turned 90 degrees with the other pairs. Retentive groove in this study lacked the intentional undercuts, in contrast with the suggestion of Weiss and Munyon. The specimens were subjected to four-point flexural loading in an Instron testing machine. The midspan flexural stress was calculated at the point of initial plastic strain as determined from a strip-chart recorder or at the point of failure if this occured at a lower stress level. Within the scope of this study, the following results were obtained. 1. The presoldered group showed flexural strength at least 2 times higher than the cast-joined groups. Its joining effectiveness was 82%. 2. In cast-joined groups, the flexural strength of joints with type B patterns exhibited 1.5 times that of joints with type A patterns. Joining effectivenesses were 38% for type B patterns, 25-26% for type A patterns. 3. The relative matched position of groove patterns did not have any significant effect on flexural strength of the cast-joined specimens with either type A patterns or type B patterns(p>.05).

  • PDF

Screening of Monascus Strains for Antimicrobial Activity and Effect of Change of Nutrients and Incubation Conditions on Antimicrobial Activity (항균성 Monascus 균주의 Screening 및 영양원과 배양조건이 항균활성에 미치는 영향)

  • 마재형;황한준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.6
    • /
    • pp.1080-1086
    • /
    • 1996
  • Monascus strains were isolated from Ang-Khak for the screening of antimicrobial activity. Two Monascus isolates, No.116 and No.481, were selected because they showed strong antimicrobial activity. Effect of various nutrients and incubation conditions on antimicrobial activity were different between two isolates. Strong antimicrobial activity of isolate No.116 was observed in the medium with 8% sucrose and $0.8%(NH_4)_2SO_4,$ 0.5% $KH_2PO_4and$ 0.5% $MgSO_4,$ while isolate No.481 required 8% sucrose, 1.6~2% $(NH_4)_2SO_4,$ 0.5% $MgSO_4and$ 0.5% $FeSO_4for$ the highest activity. The strong antimicroial activity was observed when both isolates were incubated on rice extract broth with initial pH of 5.3. The optiimum incubation temperature for the highest antimicrobial activity was $32.5^{\circ}C.$ With optimal conditions for the highest antimicrobial activity, isolate No.116 and No. 481 were both active for 51 hours or longer against test organisms Bacillus subtilis, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecium.

  • PDF

Migration and Distribution of Spargana in Body of Experimentally Infected Mice (실험감염 스파르가눔의 마우스체내 이행경로 및 분포)

  • 최원진
    • Parasites, Hosts and Diseases
    • /
    • v.22 no.2
    • /
    • pp.229-237
    • /
    • 1984
  • The migration and distribution pattern of spargana in mouse body was observed after experimental infection through mouth. The spargana were obtained from the snake, Natris tigrina lateralis, caught in Hoengseong-gun, Kangwon-do. A total of 28 male mice (ICR strain), 21∼259 in body weight, were fed each with 5 scolices (and necks) of spargana and killed after 10 minutes to 14 days. Systemic autopsy was performed on each mouse to recover the spargana. The results are as follows: 1. The spargana were found to penetrate into the stomach or duodenal wall of mice as early as 10 minutes after infection. They completed the penetration within 30 minutes and appeared in abdominal cavity. It was observed that spargana did not migrate tangentially along the gut wall but directly perforated the wall. 2. After 1 hour to 1 day the majority of spargana distributed in abdominal cavity of mice except a few which migrated to muscles or subcutaneous tissues. 3. It was within 7 days that nearly all of the spargana migrated to subcutaneous tissues. Out of total 28 in number found from subcutaneous tissues, 13 distributed around neck region, 12 around trunk and other 3 on head of mice and the most common sites were submandibular and subscapular areas. There was nearly no host tissue reaction to migrating spargana. 4. The initial length of spargana given was 4 mm in average but it increased to 12 mm after 7 days and to 35 mm after 14 days. The results suggest that spargana orally given to mice penetrate the gut wall within 30 minutes followed by escaping into abdominal cavity, and after passing through thoracic cavity or abdominal wall they anally Localize in subcutaneous tissues chieay around neck region within 7 days.

  • PDF

Potential Probiotic Properties of Exopolysaccharide Producing Lactic Acid Bacteria Isolated from Fermented Soybean Product (장류유래 Exopolysaccharide 생성 유산균의 잠재적 Probiotic 특성)

  • Ahn, Yu-Jin;Choi, Hye-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.5
    • /
    • pp.749-755
    • /
    • 2014
  • Exopolysaccharides (EPSs) have been widely used in the food industry as viscofying, stabilizing, and emulsifying agents as well as in the pharmaceutical industry for their immunomodulatory, anti-tumor, and anti-inflammatory effects. A total of 458 lactic acid bacteria (LAB) strains isolated from several kinds of soybean pastes were screened for the production of homo-EPS (HoPS). LAB isolates were primarily screened using thin layer chromatography (TLC) and further screened polymerase chain reaction (PCR) targeting genes involved in HoPS production. Six LAB isolates producing high amounts of HoPS were identified by TLC. Among these isolates, glucansucrase gene was amplified in two strains (JSA57, JSB22), whereas the fructansucrase gene was detected in three strains (JSA57, JSB22, JSB66). After isolating the strains, their morphological characteristics and 16S rDNA sequences were determined. Six species were identified as L. alimentarius HSB15, L. plantarum JSA22, L. pentosus JSA57, L. brevis JSB22, L. alimentarius JSB66, and L. parabrevis JSB89. To evaluate the potential probiotic properties of these LAB, their survival rates against a simulated intestinal environment were determined. After 2 hr of incubation in artificial gastric juice, survival rates of JSA57, JSB90, JSB22, and JSB66 were all greater than 50%. After 2 hr of incubation in bile juice, viable cell count of JSB22 was similar with initial vial cell counts. Growth of the six LAB was screened in arabino-oligosaccharide (AOS)-containing MRS broth. Results showed that growth of the isolates selectively increased after culture in AOS-containing media. Strain JSB22 (6 hr), JSB66 (6 hr), HSB15 (20 hr), and JSA22 (29 hr) showed maximum growth rate. Especially, JSB22 showed the highest growth rate. These results suggest that EPS-producing LAB isolated from Deonjang could be applied as synbiotics.

A Study on Bearing Capacity for Installed Rammed Aggregate Pier (RAP의 배치형태에 따른 지지력에 관한 연구)

  • Kim, Younghun;Cho, Changkoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.19-26
    • /
    • 2009
  • Rammed Aggregate Pier (RAP) method is intermediate foundation between deep and shallow foundation, and it has been built in world wide. RAP represents a relatively new method that has grown steadily over 19 years since Geopier of USA developed this revolutionary method in 1989. The investigation and research in domestic is not accomplished. In this paper, the examined details of different spacing of piles, bearing capacities, respectively, conclude with recommendations on how RAP can be used in future needs. This documentation further provides comparisons of the laboratory test results which were obtained from changing the spacing of piles, namely installed rammed aggregate pier. Laboratory model test was administered in a sand box. Strain control test was conducted to determine the bearing capacities of the piers; 20 mm, 30 mm and 40 mm RAP in diameter using drilling equipment to make holes were installed in sand at initial relative densities of 40%. By comparing different spacing of piles, in this experiment, piles are spaced structually span, form a ring shape, narrowing the distance of each other, to the center. the result shows that as diameter of pier is bigger in diameter, bearing capacity also dramatically increased due to raised stiffness. Also, as the space between each piers was closed, the settlement rate of soil was decreased significantly. From the test results, as the space between each piles were getting closer, it allows greater chances to have more resistance to deformation, and shows more improved stability of structures. After from the verification work which is continuous leads the accumulation of the site measuring data which is various, and bearing capacity and the settlement is a plan where the research will be advanced for optimum installed RAP.

  • PDF