• 제목/요약/키워드: Initial Strain

검색결과 1,361건 처리시간 0.042초

Fe-X%Mn 합금의 동적 소성변형거동 (Dynamic plastic deformation behavior of Fe-X%Mn alloys)

  • 박홍래;이정민;성완;김원백;최종술
    • 열처리공학회지
    • /
    • 제8권4호
    • /
    • pp.266-278
    • /
    • 1995
  • The high strain-rate dynamic plastic behavior of Fe-X%Mn alloys was investigated. The strain rate did not have an effect when tested under quasi-static strain rates($2{\times}10^{-3}/sec$ and $2{\times}10^{-1}/sec$). However, the true stress increased at all strain levels when the strain rate increased to $6{\times}10^3/sec$. Based on the experimental results, an constitution equation to calculate the dynamic strength for strain rates over $10^4/sec$ was determined. The Fe-5%Mn alloy containing athermal ${\alpha}^{\prime}$ martensite initially did not show work hardening. The work hardening increased with Mn content showing a maximum at 20% Mn. The high work hardening of Fe-20%Mn and Fe-30%Mn alloys appears to be closely related not only to the initial amounts of ${\varepsilon}$ martensite but to the strain induced transformation (${\gamma}{\rightarrow}{\varepsilon}$ and ${\varepsilon}{\rightarrow}{\alpha}^{\prime}$) occurring during each stages of deformation.

  • PDF

The Effect of Ageing Time and Temperature on the Strain Ageing Behaviour of Quenched Zircaloy-4

  • Rheem, Karp-Soon;Park, Won-Koo;Yook, Chong-Chul
    • Nuclear Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.117-123
    • /
    • 1977
  • 소입된 질칼로이-4의 가공시효(strain ageing) 현상에 미치는 시효시간 및 온도의 효과를 523-588 狂 온도 구간에서 1~52초의 짧은 시효기간에 조사하였다. 이 실험 조건하에서, 가공시효응력은 5.55$\times$$10^{-4}$ sec$^{-1}$ 신연속도(strain rate) 경우 시효시간 및 시효온도가 증가할수록 증가하였다. 소입된 질칼로이-4의 응력부하 하의 가공시효 현상이 두 한계로 나타나는 것이 확인되었는데 첫단계는 0.39ev의 활성화 에너지 값의 구간으로 이는 전위 (dislocation) 주위의 응력상태로 인한 침입형 산소원자들의 Snoek타입의 배열 (ordering)로 인한 것으로 고려되었으며 두번째 단계는 0.6ev 활성화에너지 값을 갖는 구간으로 이는 주로 산소원자들의 장범위확산에 기인하는 것으로 해석되었다.

  • PDF

Numerical analysis of embankment primary consolidation with porosity-dependent and strain-dependent coefficient of permeability

  • Balic, Anis;Hadzalic, Emina;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제11권2호
    • /
    • pp.93-106
    • /
    • 2022
  • The total embankment settlement consists of three stages: the initial settlement, the primary consolidation settlement, and the secondary consolidation settlement. The total embankment settlement is largely controlled by the primary consolidation settlement, which is usually computed with numerical models that implement Biot's theory of consolidation. The key parameter that affects the primary consolidation time is the coefficient of permeability. Due to the complex stress and strain states in the foundation soil under the embankment, to be able to predict the consolidation time more precisely, aside from porosity-dependency, the strain-dependency of the coefficient of permeability should be also taken into account in numerical analyses. In this paper, we propose a two-dimensional plane strain numerical model of embankment primary consolidation, which implements Biot's theory of consolidation with both porosity-dependent and strain-dependent coefficient of permeability. We perform several numerical simulations. First, we demonstrate the influence of the strain-dependent coefficient of permeability on the computed results. Next, we validate our numerical model by comparing computed results against in-situ measurements for two road embankments: one near the city of Saga, and the other near the city of Boston. Finally, we give our concluding remarks.

Created cavity expansion solution in anisotropic and drained condition based on Cam-Clay model

  • Li, Chao;Zoua, Jin-Feng
    • Geomechanics and Engineering
    • /
    • 제19권2호
    • /
    • pp.141-151
    • /
    • 2019
  • A novel theoretical solution is presented for created (zero initial radius) cavity expansion problem based on CamClay model and considers the effect of initial anisotropic in-situ stress and drained conditions. Here the strain of this theoretical solution is small deformation in elastic region and large deformation in plastic region. The works for cylindrical and spherical cavities expanding in drained condition from zero initial radius are investigated. Most of the conventional solutions were based on the isotropic and undrained condition, however, the initial stress state of natural soil mass is anisotropy by soil deposition history, and drained cavity expansion calculation is closer to actual engineering in permeable soil mass. Finally, the parametric study is presented in order to the engineering significance of this work.

Frequency response of initially deflected nanotubes conveying fluid via a nonlinear NSGT model

  • Farajpour, Ali;Ghayesh, Mergen H.;Farokhi, Hamed
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.71-81
    • /
    • 2019
  • The objective of this paper is to develop a size-dependent nonlinear model of beams for fluid-conveying nanotubes with an initial deflection. The nonlinear frequency response of the nanotube is analysed via an Euler-Bernoulli model. Size influences on the behaviour of the nanosystem are described utilising the nonlocal strain gradient theory (NSGT). Relative motions at the inner wall of the nanotube is taken into consideration via Beskok-Karniadakis model. Formulating kinetic and elastic energies and then employing Hamilton's approach, the nonlinear motion equations are derived. Furthermore, Galerkin's approach is employed for discretisation, and then a continuation scheme is developed for obtaining numerical results. It is observed that an initial deflection significantly alters the frequency response of NSGT nanotubes conveying fluid. For small initial deflections, a hardening nonlinearity is found whereas a softening-hardening nonlinearity is observed for large initial deflections.

페놀분해세균의 분리 및 생물학적 처리 특성 (Characterization of Biological Treatment by an Isolated Phenol-Degrading Bacterium)

  • 송형의;김진욱
    • 한국환경보건학회지
    • /
    • 제24권3호
    • /
    • pp.54-62
    • /
    • 1998
  • 20 bacterial strains capable of growing on phenol minimal medium were isolated from soil and wastewater by the enrichment culture technique, and among them, one isolate which was the best in the cell growth was selected and identified as Bacillus sp. SH3 by its characteristics. Strain SH3 could grow with phenol as the sole carbon source up to 15 mM, but did not grow in minimal medium containing above 20 mM of phenol. The optimal conditions of temperature and initial pH for growth and phenol degradation were 30$^{\circ}$C and 7.5, respectively. This strain could grow on various aromatic compounds such as catechol, protocatechuic acid, gentisic acid, o-, m-, p-cresol, benzoic acid, p-hydroxybenzoic acid, anthranilic acid, phenyl acetate and pentachlorophenol, and the growth-limiting log P value of strain SH3 on organic solvents was 3.1. In batch culture, strain SH3 degraded 97% of 10 mM phenol in 48 hours. In continuous culture under the conditions of 20 mM of influent phenol concentration and 0.050 hr$^{-1}$ of dilution rate, the treatment rate of phenol was 94%.

  • PDF

Dextranase 생산균주의 분리, 동정 및 효소생산 (Isolation and Identification of Dextranase Production Strains and Enzyme Production)

  • 이종태;이동희;곽이성;김영호;성현순;김찬조
    • 한국미생물·생명공학회지
    • /
    • 제23권4호
    • /
    • pp.405-410
    • /
    • 1995
  • In order to screen dextranase with high dextranolytic activity from microbial origins, dextranase producing fungal isolates were isolated from soil of the Taeion area. 197 strains with dextranolytic activities were isolated, out of which 3 strains with high dextranolytic activities were selected in the first screening. A strain (GR-98) with a best dextranolytic activity was selected in the second screening. The strain was identified to be similiar Aspergillus ustus by the morphological and cultural characteristics. The optimum culture temperature and initial pH for the dextranase production of the strain was 30$\circ$C and 7.0, respectively. The optimum culture medium was composed of 2% dextran, 0.3% KNO$_{3}$, 0.05% K$_{2}$HPO$_{4}$, 0.02% MgSO$_{4}$-7H$_{2}$O, 0.05% KC1, and 2.5 $\mu$g/ml pyridoxamine, and the enzyme production was maximum when the strain was subcultured at 30$\circ$C for 7 days.

  • PDF

Three-dimensional Topology Optimization using the CATO Algorithm

  • LEE, Sang Jin;BAE, Jung Eun
    • Architectural research
    • /
    • 제11권1호
    • /
    • pp.15-23
    • /
    • 2009
  • An application of the constrained adaptive topology optimization (CATO) algorithm is described for three-dimensional topology optimization of engineering structures. The enhanced assumed strain lower order solid finite element (FE) is used to evaluate the values of objective and constraint functions required in optimization process. The strain energy (SE) terms such as elastic and modal SEs are employed as the objective function to be minimized and the initial volume of structures is introduced as the constraint function. The SIMP model is adopted to facilitate the material redistribution and also to produce clearer and more distinct structural topologies. The linearly weighted objective function is introduced to consider both static and dynamic characteristics of structures. Several numerical tests are tackled and it is used to investigate the performance of the proposed three-dimensional topology optimization process. From numerical results, it is found to be that the CATO algorithm is easy to implement and extremely applicable to produce the reasonable optimum topologies for three dimensional optimization problems.

Ethanol Fermentation in Lactose Medium Using a Fusant Strain of Saccharomyces cerevisiae and Kluyveromyces fragilis

  • Lee, Chu-Hee;Yang, Sun-A;Rho, Ju-Won;Lee, Seung-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권2호
    • /
    • pp.108-114
    • /
    • 1992
  • The fermentative characteristics in ethanol production from lactose, with increased ethanol tolerance, of a fusant yeast strain constructed by protoplast fusion of Saccharomyces cerevisiae and Kluyveromyces fragilis were studied. The ethanol tolerance of this strain was increased to 8.0%, compared with the parent K. fragilis. During batch ethanol fermentation the optimal cultivation conditions for this fusant yeast were an initial pH of 4.5, a culture temperature $30^\circ{C}$. stirring at 100 rpm without aeration in 10% lactose medium (supplied with 1.0% yeast extract). Using this fusant strain in whey fermentation to ethanol, maximum ethanol production reached 3.41% (w/v) (theoretical yield; 66.7%) after a 48 hour cultivation period.

  • PDF