• Title/Summary/Keyword: Initial Rainfall

Search Result 233, Processing Time 0.037 seconds

Instability Analysis of Unsaturated Soil Slope Considering Wet Condition (습윤상태를 고려한 불포화 토사사면의 불안정성 해석)

  • Kim, Yong Min;Kim, Jaehong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1489-1498
    • /
    • 2013
  • The monolithically coupled finite element analysis for a deformable unsaturated soil slope is performed to investigate the effect of antecedent rainfall which is assumed by initial conditions varying degree of saturation (36, 51, 77%) in finite element analysis. The distributions of matric suction and deformation on slope surface obtained from numerical simulation show the instability of antecedent rainfall-induced unsaturated soil slope. Moreover, the numerical analysis using Drucker-Prager model can be checked if a soil slope has reached failure (trial failure criterion $f^{tr}$ >0, plastic behavior) or not (trial failure criterion $f^{tr}$ < 0, elastic behavior). It is found that displacement of slope surface layer increases and the matric suction on soil slope decreases with an increase of initial degree of saturation by antecedent rainfall. Especially, the matric suction of the soil slope in dry condition (S=36%) rapidly decreases rather than that in wet condition (S=51%) at the same rainfall duration. The results of the trial failure criterion ($f^{tr}$ > 0) show slope instability in the toe region and surface of the slopes.

Uncertainty Analysis of Quantitative Radar Rainfall Estimation Using the Maximum Entropy (Maximum Entropy를 이용한 정량적 레이더 강우추정 불확실성 분석)

  • Lee, Jae-Kyoung
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.511-520
    • /
    • 2015
  • Existing studies on radar rainfall uncertainties were performed to reduce the uncertainty for each stage by using bias correction during the quantitative radar rainfall estimation process. However, the studies do not provide quantitative comparison with the uncertainties for all stages. Consequently, this study proposes a suitable approach that can quantify the uncertainties at each stage of the quantitative radar rainfall estimation process. First, the new approach can present initial and final uncertainties, increasing or decreasing the uncertainty, and the uncertainty percentage at each stage. Furthermore, Maximum Entropy (ME) was applied to quantify the uncertainty in the entire process. Second, for the uncertainty quantification of radar rainfall estimation at each stage, this study used two quality control algorithms, two rainfall estimation relations, and two bias correction techniques as post-processing and progressed through all stages of the radar rainfall estimation. For the proposed approach, the final uncertainty (ME = 3.81) from the ME of the bias correction stage was the smallest while the uncertainty of the rainfall estimation stage was higher because of the use of an unsuitable relation. Additionally, the ME of the quality control was at 4.28 (112.34%), while that of the rainfall estimation was at 4.53 (118.90%), and that of the bias correction at 3.81 (100%). However, this study also determined that selecting the appropriate method for each stage would gradually reduce the uncertainty at each stage. Finally, the uncertainty due to natural variability was 93.70% of the final uncertainty. Thus, the results indicate that this new approach can contribute significantly to the field of uncertainty estimation and help with estimating more accurate radar rainfall.

Effect of Hysteresis on Soil-Water Characteristic Curve in Weathered Granite and Gneiss Soil Slopes during Rainfall Infiltration (풍화계열 사면의 불포화 함수특성곡선 이력이 강우 침투에 미치는 영향)

  • Shin, Gil-Ho;Park, Seong-Wan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.28-33
    • /
    • 2006
  • Shallow failures of slopes in weathered soils are caused by infiltration due to prolonged rainfall. These failures are mainly triggered by the deepening of the wetting band accompanied by a decrease in suction induced by the water infiltration. In this paper, hysteresis on soil-water characteristic curve(SWCC) of granite and gneiss weathered soils are investigated using transient flow analysis respectively. Each case was subjected to artificial rainfall intensities and time duration depending on the laboratory-based drying and wetting processes. The results show that the unsaturated seepage on weathered slopes are very much affected by the initial suction of soils and unsaturated permeability of the soils. In addition, a granite weathered soil has a lower air-entry value, residual matric suction, and wetting front suction and less hysteresis loop than a gneiss weathered soil.

  • PDF

Development and experimental verification of vortex typed nonfilter nonpoint source pollution reduction device (와류형 미필터 비점오염저감장치의 개발과 실험적 검증)

  • Jang, Suk Hwan;Lee, Jae-Kyoung;Lee, Hae-Kwang;Hwang, Sung-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.265-277
    • /
    • 2019
  • The objective of this study was to develop and verify an effective vortex typed nonfilter nonpoint source pollution reduction device. To verify this pollution reduction device, a total of twelves scenarios (three rainfall intensities${\times}$two states${\times}$two steps) of experiments were conducted using pollutants. First, simulated inflow (rainfall intensity 2.5 mm/hr: $0.00152m^3/s$, rainfall intensity 3.395 mm/hr: $0.00206m^3/s$, rainfall intensity 6.870 mm/hr: $0.00326m^3/s$) was calculated. Second, pollutants (mixture of 25% of four particle sizes) were selected and injected. Third, pollutant removal efficiencies of this device at its initial state and operating states were measured. As a result of analysis based on rainfall intensity, the concentration of pollutants was decreased by the device at initial and operating states at all rainfall intensities. Its pollutant removal efficiency was more than 80%, the standard set by the Ministry of Environment. Its pollutant removal efficiency was gradually increased over time, reaching approximately 90%. Its pollutant removal efficiency was higher in its operating state than that in its initial state. Therefore, nonpoint source pollutants can be effectively removed by this vortex typed nonpoint source pollution reduction device developed in this study.

The Runoff Characteristics of Non-point Pollution Sources in Industrial Complex(I): Focusing on the analysis of runoff water according to the initial rainfall of the C Industrial Complex (산업단지 비점오염원의 유출특성(I): C산업단지의 초기강우에 따른 유출수 분석을 중심으로)

  • Woo, Jae-Suk;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • In this study, rainfall water outlet water quality monitoring was performed on the C industrial complex to evaluate the characteristics of non-point pollutant runoff from the industrial complex during rainfall and to use it as basic data for calculating the load and unit of non-point pollutant. As a result of the IETD analysis, it was selected as a representative rainfall event for simulating non-point pollutants when the rainfall duration was about 21 hours and the rainfall was 26.44mm. Also as a result of monitoring the flow and water quality survey, the first rainfall was 12.2 mm, the rainfall duration was 12 hr, the number of preceding dry days was 3 days, the second rainfall was 22.1 mm, the rainfall duration was 12 hr, and the number of preceding dry days was 7 days.

The Runoff Characteristics of Non-point Pollution Sources in Industrial Complex(II): Focusing on the Outflow Characteristics of the C Industrial Complex by Rainfall Event (산업단지 비점오염원의 유출특성(II): C산업단지의 강우사상별 유출특성을 중심으로)

  • Woo, Jae-Suk;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.1
    • /
    • pp.41-47
    • /
    • 2022
  • In this study, rainfall water outlet water quality monitoring was performed on the C industrial complex to evaluate the characteristics of non-point pollutant runoff from the industrial complex during rainfall and to use it as basic data for calculating the load and unit of non-point pollutant. As a result of calculating EMC according to the outflow amount by rainfall event, the 1st rainfall showed EMCs ranges of BOD, CODMn, SS, T-N, and T-P of 1.32~48.76, 3.32~43.75, 2.89~199.43, 2.76~8.93, 0.08~068, and the 2nd rainfall was 0.5~2.9, 2.71~7.13, 2.82~174.94, 1.33~4.03, 0.01~1.28 mg/L, respectively. As a result of calculating the ratio of cumulative outflow and cumulative pollution load, most of the pollution load was less than the rainfall outflow, but over time, the initial washing phenomenon occurred as the ratio of cumulative rainfall outflow and cumulative pollution load increased to more than 1.

Analysis of First Flushing Effects and EMCs of Non-point Pollutants from Impervious Area during Rainfall (강우시 불투수성 지역의 비점오염물질 EMCs 산정 및 초기세척효과 분석)

  • Ahn, Tae-Woong;Kim, Tae-Hoon;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.459-473
    • /
    • 2012
  • This study evaluated the rainfall-runoff characteristics of Non-point Pollution Source (NPS) of the impervious area through on-site monitoring. In this study, trend analysis was performed by various runoff analysis method of non-point pollution source. The characteristics of rainfall at impervious area appeared to be influenced by rainfall strength. It is judged that the measure is required to be prepared against that now that concentration difference of non-point pollution source appeared to be big by precedent number of days of no rainfall. However, it appeared that Rainfall Sustaining Time (RST) has nothing to do with effluent concentration of non-point pollution source, however, the rising tendency that effluent concentration did not appear because the tendency that concentration of non-point pollution source reduces more than 50% within initial 60 min due to first flushing effects and rainfall sustaining time is long. If looking into the outflow tendency of non-point pollution source at the impervious area, it showed the tendency that the concentration lowers gradually as time goes by after initial concentration appeared very high. However, it could be recognized that the concentration of non-point pollution source appeared to be high as the pollutants integrated on the surface of the road during dry season. The Event Mean Concentrations (EMCs) in impervious area were ranged $9.2{\sim}199.3mg{\cdot}L^{-1}$ for TSS, $8.1{\sim}24.2mg{\cdot}L^{-1}$ for $COD_{Mn}$, $0.070{\sim}1.860mg{\cdot}L^{-1}$ for T-N. Based on such runoff characteristics of non-point pollution source, it is judged that it would be desirable to process initial rain efficiently as the measure against initial rain phenomenon at the impervious area.

The Applicability Assesment of the Short-term Rainfall Forecasting Using Translation Model (이류모델을 활용한 초단시간 강우예측의 적용성 평가)

  • Yoon, Seong-Sim;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.695-707
    • /
    • 2010
  • The frequency and size of typhoon and local severe rainfall are increasing due to the climate change and the damage also increasing from typhoon and severe rainfall. The flood forecasting and warning system to reduce the damage from typhoon and severe rainfall needs forecasted rainfall using radar data and short-term rainfall forecasting model. For this reason, this study examined the applicability of short-term rainfall forecast using translation model with weather radar data to point out that the utilization of flood forecasting in Korea. This study estimated the radar rainfall using Least-square fitting method and estimated rainfall was used as initial field of translation model. The translation model have verified accuracy of forecasted radar rainfall through the comparison of forecasted radar rainfall and observed rainfall quantitatively and qualitatively. Almost case studies showed that accuracy is over 0.6 within 4 hours leading time and mean of correlation coefficient is over 0.5 within 1 hours leading time in Kwanak and Jindo radar site. And, as the increasing the leading time, the forecast accuracy of precipitation decreased. The results of the calculated Mean Area Precipitation (MAP) showed forecast rainfall tend to be underestimated than observed rainfall but the correlation coefficient more than 0.5. Therefore it showed that translation model could be accurately predicted the rainfall relatively. The present results indicate that possibility of translation model application of Korea just within 2 hours leading forecasted rainfall.

Estimations on the Water Purification of Forest by Analyzing Water Quality Variations in Forest Hydrological Processes (산지(山地) 물순환(循環) 소과정(素過程)에 있어서 수질변화(水質變化)의 추적분석(追跡分析)에 의한 산림(山林)의 환경적(環境的) 정화기능(淨化機能)의 계량화(計量化) 연구(硏究))

  • Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.56-68
    • /
    • 1997
  • This study was carried out to evaluate the capacity of environment purification of forest and to reveal formation processes of stream water quality by evaluating water quality variations in forest hydrological processes. Water quantity, pH, electric conductivity(EC), dissolved oxygen(DO), and dissolved matter concentrations were monitored in open rainfall, throughfall, stemflow, litter flow and short-term stream flow for one unit storm, and also for those were monitored in long-term stream flow in Palgong, Yongsung, and Daedong catchments. The results were summarized as follows; 1. pH and DO values of stream flow were increased as the flux increased but EC values were decreased. 2. pH values of stemflow and throughfall were decreased with the lapse of rainfall time with lower values than open rainfall. Arid EC values were higher in initial rainfall period but lower gradually with the lapse of time than open rainfall. In litter flow, pH values were lower than open rainfall but EC values were higher. In stream flow, pH values of stream flow showed a high level in initial rainfall period and decreased remarkably with the lapse of time, but it recovered after the rainfall stopped. And however, the values of EC showed almost reverse tendency. DO values of litter flow and stream flow were decreased gradually with the lapse of time in litter flow and stream flow but there were no any tendency in open rainfall, stemflow and throughfall. 3. pH values of stemflow and throughfall in Quercus acutissima were higher than in Pinus densiflora, but EC values were lower. Total amount of canons in stemflow was higher in Pinus densiflora than in Quercus acutissima. 4. pH, DO, EC and total amount of cation values in hydrological processes were in the order of; litter flow

  • PDF

Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement (투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.