• Title/Summary/Keyword: Initial Crack

Search Result 649, Processing Time 0.025 seconds

Damage Assessment of Reinforced Concrete Beams using Damage-area concept (손상영역을 이용한 철근 콘크리트 보의 손상평가)

  • Roh, Won-Kyoun;Shim, Chang-Su;Kim, Ki-Bong;Kim, Hyun-Ho;Hong, Chang-Kuk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.647-650
    • /
    • 2004
  • This paper deals with the damage assessment of the concrete beam using Damage-area concept and the modulus of elasticity reduction of the beam was evaluated. Simply supported concrete beams were loaded at the mid-span. When the displacements from the tests were increased more than $10\%$ of the initial values, flexural cracks occured. Judging from the observed cracks, damaged area of the beams were assumed and the modulus of elasticity reduction using the smeared-cracking concept was estimated to minimize the error between the test results and analytical results. Main parameters for the assessment were height of the crack area, length of the crack area, position of the crack area and the modulus of elastic reduction ratio. In each stage, damaged elements and their stiffness reduction were estimated to minimized the error.

  • PDF

Examination on Fatigue Limit and Crack Growth Characteristic of SBHS700 Base Metal

  • Ono, Yuki;Kinoshita, Koji
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1098-1106
    • /
    • 2018
  • The object of this study is to clarify fatigue limit and fatigue crack growth characteristic of SBHS700 base metal which is 780 MPa class steel. This study carried out the fatigue tests of SBHS700 base metal containing different defect size, and the fatigue limit was compared with that of the conventional steel. Test results indicate that the fatigue limit increased with decrease initial defect size, and can be precisely evaluated by using ${\sqrt{area}}$ parameter model. This paper also presents that crack growth characteristic was almost the same as that of the conventional steel from the observation of striations by using Scanning electron microscope and length of beach marks.

Effects of Crack Velocity on Fracture Resistance of Concrete (콘크리트의 파괴저항에 대한 균열속도의 영향)

  • Yon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.52-59
    • /
    • 2003
  • Tests of concrete CLWL-DCB specimens had been conducted with displacement-controlled dynamic loading. The crack velocities for 381mm crack extension were 0.80 mm/sec ~ 215m/sec. The external work and the kinetic and strain energies were derived from the measured external load and load-point displacement. The fracture resistance of a running crack was calculated from the fitted curves of the fracture energy required for the tests. The standard error of the fracture energy was less than 3.2%. The increasing rate of the fracture resistance for 28 mm initial crack extension or micro-cracking was relatively small, and then the slope of the fracture resistance increased to the maximum value at 90∼145 mm crack extension depending on crack velocity. The maximum fracture resistance remained for 185 mm crack extension, and then the faster crack velocity showed the faster decreasing rate of the maximum fracture resistance. The maximum fracture resistance increased proportionally to the logarithm of the crack velocity from 142 N/m to 217 N/m when the crack velocity was faster than 0.273 m/sec. The maximum fracture resistance of the fastest tests was similar to the average fracture energy density of 215 N/m. To measure the fracture resistance of concrete, the stable crack extension should be larger than 90∼145 mm depending on crack velocity.

AN EXPERIMENTAL STUDY ON THE FATIGUE FRACTURE OF LAMINATE PORCELAIN (치과용 라미네이트 도재의 피로파괴에 관한 실험적 연구)

  • Park Charn-Woon;Bae Tae-Sung;Lee Sang-Don
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.482-505
    • /
    • 1993
  • The purpose of this study was to evaluate the fracture characteristics and the effect of resin bonding of laminate porcelain. In order to characterize the indentation-induced crack, Young's moduli and characteristic indentation dimensions were measured. The fatigue life under three point flexure test was measured using the electro-dynamic type fatigue machine, and the crack propagation with thermocycling was investigated on the condition of 15 second dwell time each in $5^{\circ}C\;and\;55^{\circ}C$ bath. The Vickers indentation pattern and the fracture surface were examined by an optical microscope and a scanning electron microscope (SEM). The results obtained were summarized as follows ; 1. Young's moduli(E) of the laminate porcelain and the resin cement used in this experiment were $62.56{\pm}3.79GPa$ and $15.01{\pm}0.12GPa$, respectively. 2. The initial crack size of the laminate porcelain was $69.19{\pm}5.94{\mu}m$ when an indentation load of 9.8N was applied, and the fracture toughness was $1.065{\pm}0.156MPa\;m^{1/2}$. 3. The fatigue life of laminate porcelain showed the constant fracture range at the stress level 27.46-35.30MPa. 4. When a cyclic flexure load was applied, the fatigue life of resin-bonded laminate porcelain was more decreased than that of laminate porcelain. 5. When a thermocycling was conducted, the crack growth rate of resin-bonded laminate porcelain was more increased than that of laminate porcelain. 6. Fracture surface showed the radial crack, the lateral crack, and the macroscopic crack branching region beneath the plastic deformation region when an indentation load of 9.8N was applied.

  • PDF

Analysis of Elastic-Plastic J Integrals for 3-Dimensional Cracks Using Finite Element Alternating Method (유한요소 교호법을 이용한 삼차원 균열의 탄소성 J 적분 해석)

  • Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.145-152
    • /
    • 2009
  • SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook.

Damage zone induced by quasi-static gas pressure during blasting (준정적인 발파 가스압에 의한 암반의 손상 영역 예측)

  • Sim, Young-Jong;Cho, Gye-Chun;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1409-1416
    • /
    • 2010
  • It is essential to predict a blasting-induced excavation damage zone (EDZ) beyond the proposed excavation line of a tunnel because the unwanted damage area requires extra support system for tunnel safety. Complicated blasting process which may hinder a proper characterization of the damage zone can be effectively represented by two loading mechanisms. The one is a dynamic impulsive load generating stress waves outwards immediately after detonation. The other is a gas pressure that remains for a relatively long time. Since the gas pressure reopens up the arrested cracks and continues to extend some cracks, it contributes to the final formation of EDZ induced by blasting. This paper presents the simple method to evaluate EDZ induced by gas pressure during blasting in rock. The EDZ is characterized by analyzing crack propagation from the blasthole. To do this, a model of the blasthole with a number of radial cracks of equal length in an infinite elastic plane is considered. In this model, the crack propagation is simulated by using three conditions, the crack propagation criterion, the mass conservation of the gas, and the adiabatic condition. As a result, the stress intensity factor of the crack generally decreases as crack propagates from the blasthole so that the length of the crack is determined. In addition, the effect of rock properties, initial number of cracks, and the adiabatic exponent are investigated.

  • PDF

Finite Element Based Edge Crack Analysis of Silicon-Steel Sheet in Cold Rolling (실리콘 강판 압연시 에지크랙 발생에 관한 유한요소해석)

  • Byon, Sang-Min;Lee, Jae-Hyun;Kim, Sang-Rok;Jang, Yun-Chan;Na, Doo-Hyun;Lee, Jong-Bin;Lee, Gyu-Taek;Song, Gil-Ho;Lee, Sung-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.511-517
    • /
    • 2009
  • In this paper an finite element approach for the edge crack analysis of silicon-steel sheet during cold rolling is presented. Based on the damage mechanics, the proposed approach follows the analysis steps which are composed of damage initiation, damage evolution and fracture. Through those steps, we can find out the initiation instant of crack and resulting propagated length and shape of the crack. The material constants related to fracture is experimentally obtained by tension tests using standard sheet-type specimen and notched sheet-type specimen. To evaluate the prediction accuracy, we performed a pilot rolling test with a initially notched sheets. It is shown that the results obtained by the approach converged to the experimental one concerning about the direction and length of propagated crack. The capability of the proposed one is demonstrated through the application to the actual silicon-steel rolling mill.

A Study on Damage Tolerance Assessment for the Butt Lap Joint Structure with the Effects of Fretting Fatigue Cracks (프레팅 피로균열 영향을 고려한 항공기 맞대기중첩연결 구조 손상허용성 연구)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.8-17
    • /
    • 2003
  • The butt lap joint structures which are usually designed by the concept of slow crack growth damage tolerance, show frequently the behaviors of multiple site fatigue crack growth around the fastener hole edges due to the fretting between the two jointed parts. In this paper, experimental tests of fatigue crack growth have been performed of a bolted butt lap joint structure having an initial corner crack at the fastener hole edge, with different fretting conditions under a flight load spectrum. The obtained test results were reviewed to investigate the effects of fretting fatigue cracks on the damage tolerance crack growth life. Computations of corner crack growth were also carried out using an existed model to compare with test results.

A novel method for generation and prediction of crack propagation in gravity dams

  • Zhang, Kefan;Lu, Fangyun;Peng, Yong;Li, Xiangyu
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.665-675
    • /
    • 2022
  • The safety problems of giant hydraulic structures such as dams caused by terrorist attacks, earthquakes, and wars often have an important impact on a country's economy and people's livelihood. For the national defense department, timely and effective assessment of damage to or impending damage to dams and other structures is an important issue related to the safety of people's lives and property. In the field of damage assessment and vulnerability analysis, it is usually necessary to give the damage assessment results within a few minutes to determine the physical damage (crack length, crater size, etc.) and functional damage (decreased power generation capacity, dam stability descent, etc.), so that other defense and security departments can take corresponding measures to control potential other hazards. Although traditional numerical calculation methods can accurately calculate the crack length and crater size under certain combat conditions, it usually takes a long time and is not suitable for rapid damage assessment. In order to solve similar problems, this article combines simulation calculation methods with machine learning technology interdisciplinary. First, the common concrete gravity dam shape was selected as the simulation calculation object, and XFEM (Extended Finite Element Method) was used to simulate and calculate 19 cracks with different initial positions. Then, an LSTM (Long-Short Term Memory) machine learning model was established. 15 crack paths were selected as the training set and others were set for test. At last, the LSTM model was trained by the training set, and the prediction results on the crack path were compared with the test set. The results show that this method can be used to predict the crack propagation path rapidly and accurately. In general, this article explores the application of machine learning related technologies in the field of mechanics. It has broad application prospects in the fields of damage assessment and vulnerability analysis.

Two-stage crack identification in an Euler-Bernoulli rotating beam using modal parameters and Genetic Algorithm

  • Belen Munoz-Abella;Lourdes Rubio;Patricia Rubio
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • Rotating beams play a crucial role in representing complex mechanical components that are prevalent in vital sectors like energy and transportation industries. These components are susceptible to the initiation and propagation of cracks, posing a substantial risk to their structural integrity. This study presents a two-stage methodology for detecting the location and estimating the size of an open-edge transverse crack in a rotating Euler-Bernoulli beam with a uniform cross-section. Understanding the dynamic behavior of beams is vital for the effective design and evaluation of their operational performance. In this regard, modal parameters such as natural frequencies and eigenmodes are frequently employed to detect and identify damages in mechanical components. In this instance, the Frobenius method has been employed to determine the first two natural frequencies and corresponding eigenmodes associated with flapwise bending vibration. These calculations have been performed by solving the governing differential equation that describes the motion of the beam. Various parameters have been considered, such as rotational speed, beam slenderness, hub radius, and crack size and location. The effect of the crack has been replaced by a rotational spring whose stiffness represents the increase in local flexibility as a result of the damage presence. In the initial phase of the proposed methodology, a damage index utilizing the slope of the beam's eigenmode has been employed to estimate the location of the crack. After detecting the presence of damage, the size of the crack is determined using a Genetic Algorithm optimization technique. The ultimate goal of the proposed methodology is to enable the development of more suitable and reliable maintenance plans.