• 제목/요약/키워드: Initial Angle of Attack

검색결과 27건 처리시간 0.025초

얇은 벽 보를 이용한 초기 받음각이 있는 테이퍼형 복합재료 항공기 날개의 구조 모델링 (Structural Modelling of Tapered Composite Aircraft Wings with Initial Angle of Attack using Thin-Walled Beam)

  • 김근택;송오섭
    • 항공우주시스템공학회지
    • /
    • 제3권2호
    • /
    • pp.1-11
    • /
    • 2009
  • A structural modelling for study on dynamic characteristics of tapered composite aircraft wings in the form of thin-walled beam is presented. The proposed structural model includes effects of transverse shear flexibility exhibited by the advanced composite materials and warping restraint characterizing elastic anisotropy and induced structural couplings. The complex effects of these factors could have a role in more efficient analysis on those structural models.

  • PDF

Flutter stability of a long-span suspension bridge during erection

  • Han, Yan;Liu, Shuqian;Cai, C.S.;Li, Chunguang
    • Wind and Structures
    • /
    • 제21권1호
    • /
    • pp.41-61
    • /
    • 2015
  • The flutter stability of long-span suspension bridges during erection can be more problematic and more susceptible to be influenced by many factors than in the final state. As described in this paper, numerical flutter stability analyses were performed for the construction process of Zhongdu Bridge over Yangtze River using the commercial FE package ANSYS. The effect of the initial wind attack angle, the sequence of deck erection, the stiffness reduction of stiffening girders, the structural damping, and the cross cables are discussed in detail. It was found that the non-symmetrical sequence of deck erection was confirmed to be aerodynamically favourable for the deck erection of long-span suspension bridges and the best erection sequence should be investigated in the design phase. While the initial wind attack angle of $-3^{\circ}$ is advantageous for the aerodynamic stability, $+3^{\circ}$ is disadvantageous compared with the initial wind attack angle of $0^{\circ}$ during the deck erection. The stiffness reduction of the stiffening girders has a slight effect on the flutter wind speed of the suspension bridge during erection, but structural damping has a great impact on it, especially for the early erection stages.

Evaluation of the Performance of Re-entry System for the Typical Uncertainties

  • L., Daewoo;C., Kyeumrae;P., Soohong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.156.4-156
    • /
    • 2001
  • The uncertainties of an atmospheric re-entry flight with respect to stability and controllability are aerodynamic error, measurement error of the angle of attack, variation of dynamic pressure, wind, and trim position of the control surfaces, etc. During hypersonic flight, a future angle of attack is biased from a nominal schedule. In order words, because the angle of attack is estimated from the navigation data, estimation error occurs due to wind, atmospheric density variation, etc. Error models used in this study, include a standard deviation of +-3 sigma, and are the normal distribution of statistics. This paper shows the appraisement of tracking performance onto the reference trajectory, satisfaction of the initial condition of TAEM about the re-entry system.

  • PDF

발사초기 단계에서 발사체의 마하수, 받음각 및 노즐 효과에 따른 공력특성 연구 (Study on Aerodynamic Characteristics of a Launch Vehicle with Mach Number, Angle of Attack and Nozzle Effect at Initial Stage)

  • 정태건;김성초;최종욱
    • 한국가시화정보학회지
    • /
    • 제17권1호
    • /
    • pp.34-42
    • /
    • 2019
  • Aerodynamic characteristics for a launch vehicle are numerically analyzed with various conditions. The local drag coefficients are high at the nose of the launch vehicle in subsonic region and on the main body in supersonic region because of the induced drag and the wave drag, respectively. The drag coefficients show the similar trend with the angle of attack except zero degree. However, the more the angle of attack increases, the more dependent on the Mach number the lift coefficient is. The body rotation for the flight stability destroys the vortex pair formed above the body opposite to the flight direction, so the flow fields are more or less complicated. The drag coefficient of the launch vehicle at sea level is about three times larger than that at altitude 7.2 km. And the thrust jet at the nozzle causes to reduce the drag coefficient compared with the jetless transonic flight.

Effects of types of bridge decks on competitive relationships between aerostatic and flutter stability for a super long cable-stayed bridge

  • Hu, Chuanxin;Zhou, Zhiyong;Jiang, Baosong
    • Wind and Structures
    • /
    • 제28권4호
    • /
    • pp.255-270
    • /
    • 2019
  • Aerodynamic configurations of bridge decks have significant effects on the aerostatic torsional divergence and flutter forsuper long-span bridges, which are onset for selection of suitable bridge decksfor those bridges. Based on a cable-stayed bridge with double main spans of 1500 m, considering typical twin-box, stiffening truss and closed-box section, which are the most commonly used form of bridge decks and assumed that the rigidity of those section is completely equivalent, are utilized to investigate the effects of aerodynamic configurations of bridge decks on aerodynamic instability performance comprised of the aerostatic torsional divergence and flutter, by means of wind tunnel tests and numerical calculations, including three-dimensional (3D) multimode flutter analysis and nonlinear aerostatic analysis. Regarding the aerostatic torsional divergence, the results obtained in this study show twin-box section is the best, closed-box section the second-best, and the stiffening truss section the worst. Regarding the flutter, the flutter stability of the twin-box section is far better than that of the stiffening truss and closed-box section. Furthermore, wind-resistance design depends on the torsional divergence for the twin-box and stiffening truss section. However, there are obvious competitive relationships between the aerostatic torsional divergence and flutter for the closed-box section. Flutter occur before aerostatic instability at initial attack angle of $+3^{\circ}$ and $0^{\circ}$, while the aerostatic torsional divergence occur before flutter at initial attack angle of $-3^{\circ}$. The twin-box section is the best in terms of both aerostatic and flutter stability among those bridge decks. Then mechanisms of aerostatic torsional divergence are revealed by tracking the cable forces synchronous with deformation of the bridge decksin the instability process. It was also found that the onset wind velocities of these bridge decks are very similar at attack angle of $-3^{\circ}$. This indicatesthat a stable triangular structure made up of the cable planes, the tower, and the bridge deck greatly improves the aerostatic stability of the structure, while the aerodynamic effects associated with the aerodynamic configurations of the bridge decks have little effects on the aerostatic stability at initial attack angle of $-3^{\circ}$. In addition, instability patterns of the bridge depend on both the initial attack angles and aerodynamic configurations of the bridge decks. This study is helpful in determining bridge decksfor super long-span bridges in future.

받음각을 갖는 3차원 캐비테이터에서 발생하는 비축대칭 초공동 유동해석 (Numerical Analysis of Non-Axisymmetric Supercavitating Flow Around a Three-Dimensional Cavitator with an Angle of Attack)

  • 황대규;안병권
    • 대한조선학회논문집
    • /
    • 제60권4호
    • /
    • pp.240-247
    • /
    • 2023
  • In this study, morphological and hydrodynamic characteristics of the non-axisymmetric supercavity generated behind a disk-shaped cavitator were examined. By extending the previous study on axisymmetric supercavitating flow based on a boundary element method, hydrodynamic forces acting under the angle of attack condition of 0 to 30 ° and shape characteristics of the supercavity were analyzed. The results revealed that increasing the angle of attack by 30 ° reduced the length and width of the cavity by about 15% and the volume by about 40 %. An empirical formula that can quantitatively estimate the geometrical characteristics and change of the cavity was derived. It is expected that this method can be used to evaluate the shape information and force characteristics of the supercavity for the control of the vehicle in a very short time compared to the viscous analysis in the initial design stage of the supercavity underwater vehicle.

초기 횡방향 유동이 존재하는 충돌제트/유출냉각에서 요철이 설치된 유출면에서의 열/물질전달 특성 (Heat/Mass Transfer Characteristics on Rib-roughened Surface for Impingement/Effusion Cooling System with Initial Crossflow)

  • 이동호;남용우;조형희
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.338-348
    • /
    • 2004
  • The present study is conducted to investigate the effect of rib arrangements on an impingement/effusion cooling system with initial crossflow. To simulate the impingement/effusion cooling system, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of tile hole diameter. Initial crossflow passes between the injection and effusion plates, and the square ribs (3mm) are installed on the effusion plate. Both the injection and effusion hole diameters are 10mmand Reynolds number based on the hole diameter and hole-to-hole pitch are fixed to 10,000 and 6 times of the hole diameter, respectively. To investigate the effects of rib arrangements, various rib arrangements, such as 90$^{\circ}$transverse and 45$^{\circ}$angled rib arrangements, are used. Also, the effects of flow rate ratio of crossflow to impinging jets are investigated. With the initial crossflow, locally low transfer regions are formed because the wall jets are swept away, and level of heat transfer rate get decreased with increasing flow rate of crossflow. When the ribs are installed on the effusion plate, the local distributions of heat/mass transfer coefficients around the effusion holes are changed. The local heat/mass transfer around the stagnation regions and the effusion holes are affected by the rib positions, angle of attack and rib spacing. For low blowing ratio, the ribs have adverse effects on heat/mass transfer, but for higher blowing ratios, higher and more uniform heat transfer coefficient distributions are obtained than the case without ribs because the ribs prevent the wall jets from being swept away by the crossflow and increase local turbulence of the flow near the surface. Average heat transfer coefficients with rib turbulators are approximately 10% higher than that without ribs, and the higher values are obtained with small pitch of ribs. However, the attack angle of the rib has little influence on the average heat/mass transfer.

Nonlinear aerostatic stability analysis of Hutong cable-stayed rail-cum-road bridge

  • Xu, Man;Guo, Weiwei;Xia, He;Li, Kebing
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.485-503
    • /
    • 2016
  • To investigate the nonlinear aerostatic stability of the Hutong cable-stayed rail-cum-road bridge with ultra-kilometer main span, a FEM bridge model is established. The tri-component wind loads and geometric nonlinearity are taken into consideration and discussed for the influence of nonlinear parameters and factors on bridge resistant capacity of aerostatic instability. The results show that the effect of initial wind attack-angle is significant for the aerostatic stability analysis of the bridge. The geometric nonlinearities of the bridge are of considerable importance in the analysis, especially the effect of cable sag. The instable mechanism of the Hutong Bridge with a steel truss girder is the spatial combination of vertical bending and torsion with large lateral bending displacement. The design wind velocity is much lower than the static instability wind velocity, and the structural aerostatic resistance capacity can meet the requirement.

받음각 효과를 고려한 유격이 있는 날개의 공탄성 해석 (Aeroelastic Analysis of a Wing with Freeplay Considering Effects of Angle-of-Attack)

  • 김종윤;유재한;박영근;이인
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.295-300
    • /
    • 2005
  • The freeplay, one of the concentrated structural nonlinearities, is inevitable for control surfaces of a real air vehicle due to normal wear of components and manufacturing mismatches. Also aerodynamic nonlinearities caused by a shock wave occur in transonic region. In practice, these nonlinearities induce the limit cycle oscillation (LCO) and decrease the transonic flutter speed. In this study, the fictitious mass method is used to apply a modal approach to nonlinear structural models due to freeplay. The transonic small-disturbance (TSD) equation is used to calculate unsteady aerodynamic forces in transonic region. Nonlinear aeroelastic time responses are predicted by the coupled time integration method (CTIM). This method was also applied to a 3D all-movable control wing to investigate its nonlinear aeroelastic responses. The angle of attack effect on the LCO characteristics has been found to be closely related with the initial pitching moment.

  • PDF

트윈 세일 드론의 성능추정에 관한 연구 (A Study on the Performance Predictions of Twin Sail Drone)

  • 류인호;양창조;한원희
    • 해양환경안전학회지
    • /
    • 제28권5호
    • /
    • pp.827-834
    • /
    • 2022
  • 최근 무인선을 활용한 해양 조사가 주목을 받고 있으며, 특히 세일을 이용한 소형 무인 드론에 대한 연구가 고조되고 있다. 세일 드론의 용도는 해양 조사, 감시 및 오염방제 등을 들 수 있다. 따라서 본 연구에서는 트윈 세일을 채용한 드론에 대해 선속을 추정하는 방식을 이용하여 항주최적조건을 확인하고 세일드론의 운동성능 및 저항 등 초기설계단계에서 검토해야 할 성능에 대해서 고찰하고자 하였다. 그 결과, 트윈 세일 드론은 항해속도를 2.0 m/s 이하로 유지하는 편이 유리하며 복원성 또한 DNV에서 규정하는 조건을 충족시켰다. 또한, TWA 100°일 때 받음각 20°에서 최고속력은 1.69 m/s, TWA 100°일 때 받음각 25°에서 최고속력은 1.74 m/s를 보였다.