• Title/Summary/Keyword: Inhomogeneities

Search Result 83, Processing Time 0.022 seconds

Design and Application of Acrylic Electron Wedge for Improving Dose Inhomogeneities at the Junction of Electron Fields (전자선 조사야 결합부분의 선량분포 개선을 위한 acrylic electron wedge의 제작 및 사용)

  • Kim, Young-Bum;Kwon, Young-Ho;Whang, Woong-Ku;Kim, You-Hyun;Kwon, Soo-Il
    • Journal of radiological science and technology
    • /
    • v.21 no.2
    • /
    • pp.36-42
    • /
    • 1998
  • Treatment of a large diseased area with electron often requires the use of two or more adjoining fields. In such cases, not only electron beam divergence and lateral scattering but also fields overlapping and separation may lead to significant dose inhomogeneities(${\pm}20%$) at the region of junction of fields. In this study, we made Acrylic Electron Wedges to improve dose inhomogeneities(${\pm}5%$) in these junction areas and to apply it to clinical practices. All measurements were made using 6, 9, 12, 16, 20 MeV Electron beams from a linear accelerator for a $10{\times}10\;cm$ field at 100cm of SSD. Adding a 1 mm sheet of acryl gradually from 1 mm to 15 mm acquires central axis depth dose beam profile and isodose curves in water phantom. As a result, for all energies, the practical range was reduced by approximately the same distance according to the acryl insert, e.g. a 1 mm thick acryl insert reduces the practical range by approximately 1 mm. For every mm thickness of acryl inserted, the beam energy was reduced to approximately 0.2 MeV. These effects were almost Independent of beam energy and field size. The use of Acrylic Electron Wedges produced a small increase(less than 3%) in the surface dose and a small increase(less than 1%) in X-ray contamination. For acryl inserts, thickness of 3 mm or greater, the penumbra width increased nearly linear for all energies and isodose curves near the beam edge were nearly parallel with the incident beam direction at the point of penumbra width($35\;mm{\sim}40\;mm$). We decide heel thickness and angle of the wedge at this point. These data provide the information necessary to design Acrylic Electron Wedge which can be used to improve dose uniformity at electron field junctions and it will be effectively applied to clinical practices.

  • PDF

GENERATION OF MAGNETIC FIELDS BY TEMPERATURE GRADIENTS

  • OKABE NOBUHIRO;HATTORI MAKOTO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.547-551
    • /
    • 2004
  • We showed that magnetic fields are generated in the plasma which have the temperature inhomogeneities. The mechanism is the same as the Weibel instability because the velocity distribution functions are at non-equilibrium and anisotropic under the temperature gradients. The growth timescale is much shorter than the dynamical time of structure formation. The coherence length of magnetic fields at the saturated time is much shorter than kpc scale and then, at nonlinear phase, become longer by inverse-cascade process. We report the application of our results to clusters of galaxies, not including hydrodynamic effects.

A Study on the Residual Leakage Field in the Surface Defect of Alloy Steel (합금강 표면결함의 잔류누설자장에 관한 연구)

  • Lee, I.S.;Park, U.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.22-29
    • /
    • 1989
  • The important point of MPI is the analysis of leakage field in the defective regions. The analysis of leakage field depends on many factors such like geometry and character of defect. In general the calculation of magnetic leakage fields arising from such defects presents an extremely complicated mathematical problem and is practically insoluable, since the inhomogeneities have complex geometrical shapes and may differ in physical nature. Therefore, this paper describes Hall probe measurements of residual leakage field around artificial flaws in alloy steel bar, and shows how the results to recent developments in 2D dipole and analytic models of the magnetic field defect interaction.

  • PDF

A Study on Dynamic and Static Recrystallization Behaviors and Microstructure Evolution Prediction of a Die Steel (금형강의 동적 및 정적 재결정 거동과 미세조직 변화 예측에 관한 연구)

  • 정호승;조종래;차도진;배원병
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.338-346
    • /
    • 2001
  • Evaluation of microstructural changes is important for process control during open die forging of heavy ingots. The control of forging parameters, such as shape of the dies, reduction, temperature and sequence of passes, is to maximize the forging effects and to minimize inhomogeneities of mechanical properties. The hot working die steel is produced by using the multistage open die forging. The structure is altered during forging by subsequent Precesses of plastic deformation, recrystallization and grain growth. A numerical analysis using an rigid visco-plastic finite element model was performed to predict microstructural evolution of hot working die steel.

  • PDF

Quench Behaviors of Superconducting YBCO Films for Fault Current Limiter Using Magnetic Fields (자기장이 인가된 YBCO 박막형 한류기의 ?치 특성)

  • 박권배;이방욱;강종성;오일성;최효상;현옥배
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.365-367
    • /
    • 2002
  • A serious problem in using YBCO films for fault current limiter is inhomogeneities caused by imperpect manufacturing. So simultaneous quenches are a difficult problem which elements for current limiting are connected in series for increasing voltage ratings. We investigated extended electric field - current characteristics for current limiting element of YBCO film when 0-130mT magnetic field is applied. And quench characteristics were investigated in over all element and between elements of YBCO films. From the experiments, it was shown that applied magnetic fields using solenoid coil induced uniform quench distribution for over all stripes and simultaneous quench in all elements for current limiting of YBCO film was realized.

  • PDF

FEM Analysis on Deformation Inhomogeneities Developed in Aluminum Sheets During Continuous Confined Strip Shearing (알루미늄 판재구속전단가공에서 형성되는 불균일 변형의 유한요소해석)

  • 최호준;이강노;황병복;허무영
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.43-48
    • /
    • 2003
  • The strain state during the continuous confined strip shearing (CCSS) based on ECAP was tackled by means of a two-dimensional FEM analysis. The deformation of AA 1100 sheet in the CCSS apparatus was composed of three distinct processes of rolling, bending and shearing. The pronounced difference in the friction conditions on the upper and lower roll surfaces led to the different variation of the strain component ${epsilon}_13$ throughout the thickness of the aluminum sheet. Strain accompanying bending was negligible because of a large radius of curvature. The shear deformation was concentrated at the corner of the CCSSchannel where the abrupt change in the direction of material flow occurred. The process variables involving the CCSS-die design and frictions between tools and strip influenced the evolution of shear strains during CCSS.

Numerical Analysis of Wind Driven Current and Mesoscale Air Flow in Coastal Region with Land Topography (육상지형을 고려한 연안해역에서의 중규모 기상장과 취송류에 관한 수치해석)

  • Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.23-29
    • /
    • 2006
  • A quasi depth-varying mathematical model for wind-generated circulation in coastal areas, expressed in terms of the depth-averaged horizontal velocity components and free surface elevation was validated and used to understand the diurnal circulation process. The wind velocity is considered as a dominant factor for driving the current. In this paper, three-dimensional numerical experiments that included the land topography were used to investigate the mesoscale air flaw over the coastal regions. The surface temperature of the inland area was determined through a surface heat budget consideration with the inclusion of a layer of vegetation.A series of numerical experiments were then carried out to investigate the diurnal response of the air flaw and wind-generated circulation to various types of surface inhomogeneities.

Incremental Theory of Reinforcement Damage in Discontinuously-Reinforced Composite (분산형 복합재료의 강화재 손상 증분형 이론)

  • 김홍건
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.122-126
    • /
    • 2000
  • In particle or short-fiber reinforced composites cracking of the reinforcements is a significant damage mode because the broken reinformcements lose load carrying capacity . The average stress in the inhomogeneity represents its load carrying capacity and the difference between the average stresses of the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix, An incremental constitutive relation of particle or short-fiber reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. influence of the cracking damage on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.

  • PDF

Analysis of Damage Mechanism for Optimum Design in Discontinuously-Reinforced Composites (불균질입자강화 복합재료의 최적설계를 위한 손상메커니즘 해석)

  • 조영태;조의일
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.106-112
    • /
    • 2004
  • In particle or short-fiber reinforced composites, cracking or debonding of the reinforcements cause a significant damage mode because the damaged reinforcements lose load carrying capacity. The average stress in the inhomogeneity represents its load carrying capacity, and the difference between the average stresses of the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix. An incremental constitutive relation of discontinuously-reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.