• Title/Summary/Keyword: Inhibiting rate

Search Result 234, Processing Time 0.025 seconds

Inhibition of Polo-like Kinase 1 Prevents the Male Pronuclear Formation Via Alpha-tubulin Recruiting in In vivo-fertilized Murine Embryos

  • Moon, Jeonghyeon;Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.229-235
    • /
    • 2018
  • Polo-like kinase 1 (Plk1) has been known to be a critical element in cell division including centrosome maturation, cytokinesis and spindle formation in somatic, cancer, and mammalian embryonic cells. In particular, Plk1 is highly expressed in cancer cells. Plk1 inhibitors, such as BI2536, have been widely used to prevent cell division as an anticancer drug. In this study, the fertilized murine oocytes were treated with BI2536 for 30 min after recovery from the oviduct to investigate the effect of down-regulation of Plk1 in the in vivo-fertilized murine embryos. Then, the localization and expression of Plk1 was observed by immunofluorescence staining. The sperm which had entered into the oocyte cytoplasm did not form male pronuclei in BI2536-treated oocytes. The BI2536-treated oocytes showed significantly lower expression of Plk1 than non-treated control group. In addition, alpha-tubulin and Plk1 gathered around sperm head in non-treated oocytes, while BI2536-treated oocytes did not show this phenomenon. The present study demonstrates that the Plk1 inhibitor, BI2536, hinders fertilization by inhibiting the formation of murine male pronucleus.

Synergistic effect of ribavirin and vaccine for protection during early infection stage of foot-and-mouth disease

  • Choi, Joo-Hyung;Jeong, Kwiwan;Kim, Su-Mi;Ko, Mi-Kyeong;You, Su-Hwa;Lyoo, Young S.;Kim, Byounghan;Ku, Jin-Mo;Park, Jong-Hyeon
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.788-797
    • /
    • 2018
  • In many countries, vaccines are used for the prevention of foot-and-mouth disease (FMD). However, because there is no protection against FMD immediately after vaccination, research and development on antiviral agents is being conducted to induce protection until immunological competence is produced. This study tested whether well-known chemicals used as RNA virus treatment agents had inhibitory effects on FMD viruses (FMDVs) and demonstrated that ribavirin showed antiviral effects against FMDV in vitro/in vivo. In addition, it was observed that combining the administration of the antiviral agents orally and complementary therapy with vaccines synergistically enhanced antiviral activity and preserved the survival rate and body weight in the experimental animals. Antiviral agents mixed with an adjuvant were inoculated intramuscularly along with the vaccines, thereby inhibiting virus replication after injection and verifying that it was possible to induce early protection against viral infection prior to immunity being achieved through the vaccine. Finally, pigs treated with antiviral agents and vaccines showed no clinical signs and had low virus excretion. Based on these results, it is expected that this combined approach could be a therapeutic and preventive treatment for early protection against FMD.

Anisomycin protects against sepsis by attenuating IκB kinase-dependent NF-κB activation and inflammatory gene expression

  • Park, Gyoung Lim;Park, Minkyung;Min, Jeong-Ki;Park, Young-Jun;Chung, Su Wol;Lee, Seon-Jin
    • BMB Reports
    • /
    • v.54 no.11
    • /
    • pp.545-550
    • /
    • 2021
  • Anisomycin is known to inhibit eukaryotic protein synthesis and has been established as an antibiotic and anticancer drug. However, the molecular targets of anisomycin and its mechanism of action have not been explained in macrophages. Here, we demonstrated the anti-inflammatory effects of anisomycin both in vivo and in vitro. We found that anisomycin decreased the mortality rate of macrophages in cecal ligation and puncture (CLP)- and lipopolysaccharide (LPS)-induced acute sepsis. It also declined the gene expression of proinflammatory mediators such as inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin-1β as well as the nitric oxide and proinflammatory cytokines production in macrophages subjected to LPS-induced acute sepsis. Furthermore, anisomycin attenuated nuclear factor (NF)-κB activation in LPS-induced macrophages, which correlated with the inhibition of phosphorylation of NF-κB-inducing kinase and IκB kinase, phosphorylation and IκBα proteolytic degradation, and NF-κB p65 subunit nuclear translocation. These results suggest that anisomycin prevented acute inflammation by inhibiting NF-κB-related inflammatory gene expression and could be a potential therapeutic candidate for sepsis.

Suppressing breast cancer by exercise: consideration to animal models and exercise protocols

  • Lee, Jea Jun;Beak, Suji;Ahn, Sang Hyun;Moon, Byung Seok;Kim, Jisu;Lee, Kang Pa
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.2
    • /
    • pp.22-29
    • /
    • 2020
  • [Purpose] Exercise is thought to have a significant effect on chemotherapy, and previous studies have reported that exercise can increase patient survival. Thus, in this review, we aimed to summarize various animal models to analyze the effects of exercise on breast cancer. [Methods] We summarized types of breast cancer animal models from various reports and analyzed the effects of exercise on anti-cancer factors in breast cancer animal models. [Results] This review aimed to systematically investigate if exercise could aid in suppressing breast cancer. Our study includes (a) increase in survival rate through exercise; (b) the intensity of exercise should be consistent and increased; (c) a mechanism for inhibiting carcinogenesis through exercise; (d) effects of exercise on anti-cancer function. [Conclusion] This review suggested the necessity of a variety of animal models for preclinical studies prior to breast cancer clinical trials. It also provides evidence to support the view that exercise plays an important role in the prevention or treatment of breast cancer by influencing anticancer factors.

Development of a multi-stimulation system to suppress proliferation of lung cancer cells (폐암 세포 증식 억제 멀티모달 시스템 개발)

  • Lee, Eonjin;Lee, Eunji;Kim, Minkyeong;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.397-399
    • /
    • 2021
  • In this study, a basic study on the development of a multi-stimulation system was conducted to suppress lung cancer cell proliferation. Stimulation was applied to lung cancer cells using a photo-stimulating system and ultrasonic waves that generate a specific frequency, and the effect of inhibiting proliferation of cells was imaged and quantitatively evaluated. As a result of the experiment, when a single LED, single ultrasound stimulus were applied and ultrasound and LED stimuli were applied at the same time, meaningful results were shown in the proliferation rate of lung cancer cells.

  • PDF

Ginseng and ginsenosides on cardiovascular and pulmonary diseases; Pharmacological potentials for the coronavirus (COVID-19)

  • Ajay Vijayakumar;Jong-Hoon Kim
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.113-121
    • /
    • 2024
  • Since its outbreak in late 2019, the Coronavirus disease 2019 (COVID-19) pandemic has profoundly caused global morbidity and deaths. The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has major complications in cardiovascular and pulmonary system. The increased rate of mortality is due to delayed detection of certain biomarkers that are crucial in the development of disease. Furthermore, certain proteins and enzymes in cellular signaling pathways play an important role in replication of SARS-CoV-2. Most cases are mild to moderate symptoms, however severe cases of COVID-19 leads to death. Detecting the level of biomarkers such as C-reactive protein, cardiac troponin, creatine kinase, creatine kinaseMB, procalcitonin and Matrix metalloproteinases helps in early detection of the severity of disease. Similarly, through downregulating Renin-angiotensin system, interleukin, Mitogen-activated protein kinases and Phosphoinositide 3-kinases pathways, COVID-19 can be effectively controlled and mortality could be prevented. Ginseng and ginsenosides possess therapeutic potential in cardiac and pulmonary complications, there are several studies performed in which they have suppressed these biomarkers and downregulated the pathways, thereby inhibiting the further spread of disease. Supplementation with ginseng or ginsenoside could act on multiple pathways to reduce the level of biomarkers significantly and alleviate cardiac and pulmonary damage. Therefore, this review summarizes the potential of ginseng extract and ginsenosides in controlling the cardiovascular and pulmonary diseases by COVID-19.

Enhanced Photocatalytic Disinfection Efficiency through TiO2/WO3 Composite Synthesis and Heat Treatment Optimization

  • Sang-Hee Kim;Seo-Hee Kim;Jun Kang;Myeong-Hoon Lee;Yong-Sup Yun
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.3
    • /
    • pp.179-191
    • /
    • 2024
  • This study focuses on improving the photocatalytic degradation efficiency by synthesizing a TiO2/WO3 composite. Given the environmental significance of photocatalysis and the limitations posed by TiO2's large bandgap and high electron recombination rate, we explored doping, surface modification, and synthesis strategies. The composite was created using a ball mill process and heat treatment, analyzed with field emission scanning electron microscope, high resolution X-ray diffraction, Raman microscope, and UV-Vis/NIR spectrometer to examine its morphology, composition and absorbance. We found that incorporating WO3 into the TiO2 lattice forms a Wx-Ti1-x-O2 solution, with optimal WO3 content reducing the band gap and enhancing sterilization efficiency by inhibiting the anatasese to rutile transition. This contributes to the field by offering a way to overcome TiO2's limitations and improve photocatalytic performance.

Medical Management of Patients With Heart Failure and Reduced Ejection Fraction

  • Barry Greenberg
    • Korean Circulation Journal
    • /
    • v.52 no.3
    • /
    • pp.173-197
    • /
    • 2022
  • Treatment options for patients with heart failure (HF) with reduced ejection fraction (HFrEF) have expanded considerably over the past few decades. Whereas neurohormonal modulation remains central to the management of patients with HFrEF, other pathways have been targeted with drugs that have novel mechanisms of action. The angiotensin receptor-neprilysin inhibitors (ARNIs) which enhance levels of compensatory molecules such as the natriuretic peptides while simultaneously providing angiotensin receptor blockade have emerged as the preferred strategy for inhibiting the renin angiotensin system. Sodium glucose cotransporter 2 (SGLT2) inhibitors which were developed as hypoglycemic agents have been shown to improve outcomes in patients with HF regardless of their diabetic status. These agents along with beta blockers and mineralocorticoid receptor antagonists are the core medical therapies for patients with HFrEF. Additional approaches using ivabradine to slow heart rate in patients with sinus rhythm, the hydralazine/isosorbide dinitrate combination to unload the heart, digoxin to provide inotropic support and vericiguat to augment cyclic guanosine monophosphate production have been shown in well-designed trials to have beneficial effects in the HFrEF population and are used as adjuncts to the core therapies in selected patients. This review provides an overview of the medical management of patients with HFrEF with focus on the major developments that have taken place in the field. It offers prospective of how these drugs should be employed in clinical practice and also a glimpse into some strategies that may prove to be useful in the future.

Role of Peptides in Rumen Microbial Metabolism - Review -

  • Wallace, R.J.;Atasoglu, C.;Newbold, C.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.139-147
    • /
    • 1999
  • Peptides are formed in the rumen as the result of microbial proteinase activity. The predominant type of activity is cysteine ptoteinase, but others, such as serine proteinases, are also present. Many species of protozoa, bacteria and fungi are involved in ptoteolysis; large animal-to-animal variability is found when proteinase activities in different animals are compared. The peptides formed from proteolysis are broken down to amino acids by peptidases. Different peptides are broken down at different rates, depending on their chemical composition and particularly their N-terminal structure. Indeed, chemical addition to the N-terminus of small peptides, such as by acetylation, causes the peptides to become stable to breakdown by the rumen microbial population; the microorganisms do not appear to adapt to hydrolyse acetylated peptides even after several weeks exposure to dietary acetylated peptides, and the amino acids present in acetylated peptides are absorbed from the small intestine. The amino acids present in some acetylated peptides remain available in nutritional trials with rats, but the nutritive value of the whole amino acid mixture is decreased by acetylation. The genus Prevotella is responsible for most of the catabolic peptidase activity in the rumen, via its dipeptidyl peptidase activities, which release dipeptides rather than free amino acids from the N-terminus of oligopeptides. Studies with dipeptidyl peptidase mutants of Prevotella suggest that it may be possible to slow the rate of peptide hydrolysis by the mixed rumen microbial population by inhibiting dipeptidyl peptidase activity of Prevotella or the rate of peptide uptake by this genus. Peptides and amino acids also stimulate the growth of rumen microorganisms, and are necessary for optimal growth rates of many species growing on tapidly fermented substrates; in rich medium, most bacteria use pre-formed amino acids for more than 90% of their amino acid requirements. Cellulolytic species are exceptional in this respect, but they still incorporate about half of their cell N from pre-formed amino acids in rich medium. However, the extent to which bacteria use ammonia vs. peptides and amino acids for protein synthesis also depends on the concentrations of each, such that preformed amino acids and peptides are probably used to a much lesser extent in vivo than many in vitro experiments might suggest.

Effect of Crude Extracts and Chopped Shoot Application of Allium spp. on Rice Growth (파속 식물의 조추출물과 경엽 처리가 벼의 생육에 미치는 영향)

  • 최상태;안형근;장영득
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.6
    • /
    • pp.625-633
    • /
    • 1996
  • Crude extracts of 4 Allium SPP. such as welsh onion, onion, chinese chives and garlic were purified by paper chromatography and these activities were bio-assayed with rice seedlings. The stem and leaf slices of Allium spp. were treated and rice seedlings were planted in the soil to know the effect of its application on rice growth. The weak acidic fraction of Allium SPP. enhanced the growth and rooting of rice seedlings and had greater activity in promoting than in inhibiting the growth on rice seedling. Elongation of the second leaf sheath of the rice seedlings were not influenced by the extracts of Allium SPP. The stem and leaf application 10 days before transplanting, increased the number of effective tiller remarkably. Especially, the application of 50~400g welsh onion and 50~200g onions increased the number of spikelets per panicle compared to standard fertilization. But, in application of larger amounts, the-death rate of the rice seedlings after transplanting was higher in the stem and leaf application 10 days before transplanting than the one applied on the transplanting day. In particular, treatments of chinese chives and garlic showed higher death rate than those of welsh onion or onion. The stem and leaf application of Allium SPP. resulted in high yield than standard fertilization.

  • PDF