DOI QR코드

DOI QR Code

Suppressing breast cancer by exercise: consideration to animal models and exercise protocols

  • Lee, Jea Jun (Laboratory Animal Center, Osong Medical Innovation Foundation) ;
  • Beak, Suji (Research and Development Center, UMUST R&D Corporation) ;
  • Ahn, Sang Hyun (Department of Anatomy, Semyung University) ;
  • Moon, Byung Seok (Department of Nuclear Medicine, Ewha Womans University College of Medicine) ;
  • Kim, Jisu (Physical Activity and Performance Institute, Konkuk University) ;
  • Lee, Kang Pa (Research and Development Center, UMUST R&D Corporation)
  • Received : 2020.06.17
  • Accepted : 2020.06.23
  • Published : 2020.06.30

Abstract

[Purpose] Exercise is thought to have a significant effect on chemotherapy, and previous studies have reported that exercise can increase patient survival. Thus, in this review, we aimed to summarize various animal models to analyze the effects of exercise on breast cancer. [Methods] We summarized types of breast cancer animal models from various reports and analyzed the effects of exercise on anti-cancer factors in breast cancer animal models. [Results] This review aimed to systematically investigate if exercise could aid in suppressing breast cancer. Our study includes (a) increase in survival rate through exercise; (b) the intensity of exercise should be consistent and increased; (c) a mechanism for inhibiting carcinogenesis through exercise; (d) effects of exercise on anti-cancer function. [Conclusion] This review suggested the necessity of a variety of animal models for preclinical studies prior to breast cancer clinical trials. It also provides evidence to support the view that exercise plays an important role in the prevention or treatment of breast cancer by influencing anticancer factors.

Keywords

Acknowledgement

This research was supported by a grant from the Osong Medical Cluster R&D Project funded by the Republic of Korea's Health and Welfare (grant number HO15C0001). This paper was supported by the KU Research Professor Program of Konkuk University.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424. https://doi.org/10.3322/caac.21492
  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7-34. https://doi.org/10.3322/caac.21551
  3. Lee KP, Lee K, Park WH, Kim H, Hong H. Piperine inhibits platelet-derived growth factor-BB-induced proliferation and migration in vascular smooth muscle cells. J Med Food. 2015;18:208-15. https://doi.org/10.1089/jmf.2014.3229
  4. Dethlefsen C, Hansen LS, Lillelund C, Andersen C, Gehl J, Christensen JF, Pedersen BK, Hojman P. Exercise-induced catecholamines activate the hippo tumor suppressor pathway to reduce risks of breast cancer development. Cancer Res. 2017;77:4894-04.
  5. Berrueta L, Bergholz J, Munoz D, Muskaj I, Badger GJ, Shukla A, Kim HJ, Zhao JJ, Langevin HM. Stretching reduces tumor growth in a mouse breast cancer model. Sci Rep. 2018;8:7864. https://doi.org/10.1038/s41598-018-26198-7
  6. Alizadeh AM, Heydari Z, Rahimi M, Bazgir B, Shirvani H, Alipour S, Heidarian Y, Khalighfard S, Isanejad A. Oxytocin mediates the beneficial effects of the exercise training on breast cancer. Exp Physiol. 2018;103:222-35. https://doi.org/10.1113/EP086463
  7. Buss LA, Dachs GU. Voluntary exercise slows breast tumor establishment and reduces tumor hypoxia in ApoE-/-mice. J Appl Physiol. 2018;124:938-49. https://doi.org/10.1152/japplphysiol.00738.2017
  8. Glass OK, Bowie M, Fuller J, Darr D, Usary J, Boss K, Choudhury KR, Liu X, Zhang Z, Locasale JW, Williams C, Dewhirst MW, Jones LW, Seewaldt V. Differential response to exercise in claudin-low breast cancer. Oncotarget. 2017;8:100989-1004. https://doi.org/10.18632/oncotarget.21054
  9. Betof AS, Lascola CD, Weitzel D, Landon C, Scarbrough PM, Devi GR, Palmer G, Jones LW, Dewhirst MW. Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise. J Natl Cancer Inst. 2015;107:djv040.
  10. Wennerberg E, Lhuillier C, Rybstein MD, Dannenberg K, Rudqvist NP, Koelwyn GJ, Jones LW, Demaria S. Exercise reduces immune suppression and breast cancer progression in a preclinical model. Oncotarget. 2020;11:452-61. https://doi.org/10.18632/oncotarget.27464
  11. Wang B, Xu H, Hu X, Ma W, Zhang J, Li Y, Yu M, Zhang Y, Li X, Ye X. Synergetic inhibition of daidzein and regular exercise on breast cancer in bearing-4T1 mice by regulating NK cells and apoptosis pathway. Life Sci. 2020;245:117387. https://doi.org/10.1016/j.lfs.2020.117387
  12. Smeda M, Przyborowski K, Proniewski B, Zakrzewska A, Kaczor D, Stojak M, Buczek E, Nieckarz Z, Zoladz JA, Wietrzyk J, Chlopicki S. Breast cancer pulmonary metastasis is increased in mice undertaking spontaneous physical training in the running wheel; a call for revising beneficial effects of exercise on cancer progression. Am J Cancer Res. 2017;7:1926-36.
  13. Goh J, Endicott E, Ladiges WC. Pre-tumor exercise decreases breast cancer in old mice in a distance-dependent manner. Am J Cancer Res. 2014;4:378-84.
  14. Lee B, Chung W. Effects of aerobic exercise on cytokine expression in a breast cancer mouse model. Iran J Public Health. 2020;49:14-20.
  15. Steiner JL, Davis JM, McClellan JL, Enos RT, Murphy EA. Effects of voluntary exercise on tumorigenesis in the C3(1)/SV40Tag transgenic mouse model of breast cancer. Int J Oncol. 2013;42:1466-72. https://doi.org/10.3892/ijo.2013.1827
  16. Colbert LH, Westerlind KC, Perkins SN, Haines DC, Berrigan D, Donehower LA, Fuchs-Young R, Hursting SD. Exercise effects on tumorigenesis in a p53-deficient mouse model of breast cancer. Med Sci Sports Exerc. 2009;41:1597-605. https://doi.org/10.1249/MSS.0b013e31819f1f05
  17. Jones LW, Viglianti BL, Tashjian JA, Kothadia SM, Keir ST, Freedland SJ, Potter MQ, Moon EJ, Schroeder T, Herndon JE 2nd, Dewhirst MW. Effect of aerobic exercise on tumor physiology in an animal model of human breast cancer. J Appl Physiol. 2010;108:343-8. https://doi.org/10.1152/japplphysiol.00424.2009
  18. Goh J, Tsai J, Bammler TK, Farin FM, Endicott E, Ladiges WC. Exercise training in transgenic mice is associated with attenuation of early breast cancer growth in a dose-dependent manner. PLoS One. 2013;8:e80123. https://doi.org/10.1371/journal.pone.0080123
  19. Vulczak A, Souza AO, Ferrari GD, Azzolini AECS, Pereira-da-Silva G, Alberici LC. Moderate exercise modulates tumor metabolism of triple-negative nreast cancer. Cells. 2020;9:628. https://doi.org/10.3390/cells9030628
  20. Shalamzari SA, Agha-Alinejad H, Alizadeh S, Shahbazi S, Khatib ZK, Kazemi A, Saei MA, Minayi N. The effect of exercise training on the level of tissue IL-6 and vascular endothelial growth factor in breast cancer bearing mice. Iran J Basic Med Sci. 2014;17:231-58.
  21. Hagar A, Wang Z, Koyama S, Serrano JA, Melo L, Vargas S, Carpenter R, Foley J. Endurance training slows breast tumor growth in mice by suppressing Treg cells recruitment to tumors. BMC Cancer. 2019;19:536. https://doi.org/10.1186/s12885-019-5745-7
  22. Molanouri Shamsi M, Chekachak S, Soudi S, Quinn LS, Ranjbar K, Chenari J, Yazdi MH, Mahdavi M. Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-α ratio in skeletal muscle of 4T1 breast cancer mice with cachexia. Cytokine. 2017;90:100-8. https://doi.org/10.1016/j.cyto.2016.11.005
  23. Bianco TM, Abdalla DR, Desiderio CS, Thys S, Simoens C, Bogers JP, Murta EFC, Michelin MA. The influence of physical activity in the anti-tumor immune response in experimental breast tumor. Immunol Lett. 2017;190:148-58. https://doi.org/10.1016/j.imlet.2017.08.007
  24. Ahmadabadi F, Saghebjoo M, Huang CJ, Saffari I, Zardast M. The effects of high-intensity interval training and saffron aqueous extract supplementation on alterations of body weight and apoptotic indices in skeletal muscle of 4T1 breast cancer-bearing mice with cachexia. Appl Physiol Nutr Metab. 2020;45:555-63. https://doi.org/10.1139/apnm-2019-0352
  25. Khori V, Amani Shalamzari S, Isanejad A, Alizadeh AM, Alizadeh S, Khodayari S, Khodayari H, Shahbazi S, Zahedi A, Sohanaki H, Khaniki M, Mahdian R, Saffari M, Fayad R. Effects of exercise training together with tamoxifen in reducing mammary tumor burden in mice: Possible underlying pathway of miR-21. Eur J Pharmacol. 2015;765:179-87. https://doi.org/10.1016/j.ejphar.2015.08.031
  26. Buss LA, Ang AD, Hock B, Robinson BA, Currie MJ, Dachs GU. Effect of post- implant exercise on tumour growth rate, perfusion and hypoxia in mice. PLoS One. 2020;15:e0229290. https://doi.org/10.1371/journal.pone.0229290
  27. Welsch MA, Cohen LA, Welsch CW. Inhibition of growth of human breast carcinoma xenografts by energy expenditure via voluntary exercise in athymic mice fed a high-fat diet. Nutr Cancer. 1995;23:309-18. https://doi.org/10.1080/01635589509514385
  28. Abdalla DR, Murta EF, Michelin MA. The influence of physical activity on the profile of immune response cells and cytokine synthesis in mice with experimental breast tumors induced by 7,12-dimethylbenzanthracene. Eur J Cancer Prev. 2013;22:251-8. https://doi.org/10.1097/CEJ.0b013e3283592cbb
  29. McGee SL, Hargreaves M. Epigenetics and exercise. Trends Endocrinol Metab. 2019 ;30:636-45. https://doi.org/10.1016/j.tem.2019.06.002
  30. Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020; 52:192-203. https://doi.org/10.1038/s12276-020-0384-2
  31. Di Meo S, Napolitano G, Venditti P. Mediators of physical activity protection against ROS-linked skeletal muscle damage. Int J Mol Sci. 2019;20:3024. https://doi.org/10.3390/ijms20123024
  32. He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox mechanism of reactive oxygen species in exercise. Front Physiol. 2016;7:486. https://doi.org/10.3389/fphys.2016.00486
  33. Kim SJ, Kim HS, Seo YR. Understanding of ROS-inducing strategy in anticancer therapy. Oxid Med Cell Longev. 2019;2019:5381692.
  34. Lin J, Xia L, Liang J, Han Y, Wang H, Oyang L, Tan S, Tian Y, Rao S, Chen X, Tang Y, Su M, Luo X, Wang Y, Wang H, Zhou Y, Liao Q. The roles of glucose metabolic reprogramming in chemo- and radio-resistance. J Exp Clin Cancer Res. 2019;38:218. https://doi.org/10.1186/s13046-019-1214-z
  35. Pothiwala P, Jain SK, Yaturu S. Metabolic syndrome and cancer. Metab Syndr Relat Disord. 2009;7:279-88. https://doi.org/10.1089/met.2008.0065
  36. Dos Santos CMM, Diniz VLS, Bachi ALL, de Oliveira LCDS, Ghazal T, Passos MEP, de Oliveira HH, Murata G, Masi LN, Martins AR, Levada-Pires AC, Curi R, Hirabara M, Sellitti DF, Pithon-Curi TC, Gorjao R. Moderate physical exercise improves lymphocyte function in melanoma-bearing mice on a high-fat diet. Nutr Metab. 2019;16:63. https://doi.org/10.1186/s12986-019-0394-z
  37. Moreira VM, da Silva Franco CC, Prates KV, Gomes RM, de Moraes AMP, Ribeiro TA, Martins IP, Previate C, Pavanello A, Matiusso CCI, Almeida DL, Francisco FA, Malta A, Tofolo LP, da Silva Silveira S, Saavedra LPJ, Machado K, da Silva PHO, Fabricio GS, Palma-Rigo K, de Souza HM, de Fatima Silva F, Biazi GR, Pereira TS, Vieira E, Miranda RA, de Oliveira JC, da Costa Lima LD, Rinaldi W, Ravanelli MI, de Freitas Mathias PC. Aerobic exercise training attenuates tumor growth and reduces insulin secretion in Walker 256 tumor-bearing rats. Front Physiol. 2018 May 8;9:465. https://doi.org/10.3389/fphys.2018.00465
  38. Zajac A, Poprzecki S, Maszczyk A, Czuba M, Michalczyk M, Zydek G. The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients. 2014;6:2493-508. https://doi.org/10.3390/nu6072493
  39. Tan-Shalaby J. Ketogenic diets and cancer: emerging evidence. Fed Pract. 2017 Feb;34:37S-42S.
  40. Weber DD, Aminazdeh-Gohari S, Kofler B. Ketogenic diet in cancer therapy. Aging (Albany NY). 2018;10:164-5. https://doi.org/10.18632/aging.101382