• Title/Summary/Keyword: Infusion pump

Search Result 94, Processing Time 0.037 seconds

Design of Remote Infusion Pump Monitoring System Using Wireless Network and RFID Technology (무선 네트워크와 RFID 기술을 이용한 원격 Infusion Pump 모니터링 시스템 설계)

  • Lee, Seo-Joon;Lee, Tae-Ro
    • Journal of Digital Convergence
    • /
    • v.11 no.6
    • /
    • pp.159-167
    • /
    • 2013
  • Development of infusion pumps enabled injecting medical substances continuously and automatically to patients in hospitals. However, in cases when patients encountered emergent situations when moving to other areas, no clear measures were taken. The problem is that even the lightest error in injecting medical substances could be critical to the patient. That is why we proposes a remote infusion monitoring system using wireless network and RFID technology in this paper. When a problem occurs in the infusion pump, the medical personnel are informed of their patients' emergent situation and location information via wireless network so not only can they swiftly and accurately provide medical services but also can prevent safety accidents due to infusion pumps.

Efficacy evaluation of syringe pump developed for continuous drug infusion

  • Jung, Bongsu;Seo, Kwang-Suk;Kwon, Suk Jin;Lee, Kiyoung;Hong, Suyong;Seo, Hyounsoon;Kim, Gi-Young;Park, Geun-Mook;Jeong, Juhee;Seo, Soowon
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.16 no.4
    • /
    • pp.303-307
    • /
    • 2016
  • Background: In dental intravenous sedation, continuous intravenous infusion of a low-dose drug requires an infusion pump such as a syringe pump. To develop a new syringe pump for clinical use, the functions of the pump must meet certain international standards. Various safety and efficacy tests must be performed on the syringe pump, as stipulated by these standards, and an approval must be received from the approving agency based on such test results. Methods: The authors of the present study developed a novel syringe pump and performed efficacy evaluation by testing its infusion speed at 1 and 25 ml/h, and infusion performance testing at 2 and 24 h. Moreover, performance evaluation was conducted by comparing the novel pump to an existing pump with the infusion speed varied from 1 to 5 ml/h. Results: In the efficacy testing on the newly developed syringe pump, infusion with the infusion speed initially set to 1 ml/h resulted in infusion speeds of 1.00 and 0.99 ml/h in the 2- and 24-h assessment, respectively. Changing the infusion speed setting to 25 ml/h resulted in an infusion speed of 25.09 and 23.92 ml/h in the 2- and 24-h assessment, respectively. These results show no significant differences when compared with other commercially available pumps. Conclusions: The efficacy testing of the newly developed syringe pump showed the accuracy to be within tolerance. Based on these findings, we believe that the newly developed syringe pump is suitable for clinical use.

Performance evaluation study of a commercially available smart patient-controlled analgesia pump with the microbalance method and an infusion analyzer

  • Park, Jinsoo;Jung, Bongsu
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.22 no.2
    • /
    • pp.129-143
    • /
    • 2022
  • Background: Patient-controlled analgesia (PCA) has been widely used as an effective medical treatment for pain and for postoperative analgesia. However, improper dose errors in intravenous (IV) administration of narcotic analgesics from a PCA infusion pump can cause patient harm. Furthermore, opioid overdose is considered one of the highest risk factors for patients receiving pain medications. Therefore, accurate delivery of opioid analgesics is a critical function of PCA infusion pumps. Methods: We designed a microbalance method that consisted of a closed acrylic chamber containing a layer and an oil layer with an electronic balance. A commercially available infusion analyzer (IDA-5, Fluke Co., Everett, WA, USA) was used to measure the accuracy of the infusion flow rate from a commercially available smart PCA infusion pump (PS-1000, UNIMEDICS, Co., Ltd., Seoul, Korea) and compared with the results of the microbalance method. We evaluated the uncertainty of the flow rate measurement using the ISO guide (GUM:1995 part3). The battery life, delay time of the occlusion alarm, and bolus function of the PCA pump were also tested. Results: The microbalance method was good in the short-term 2 h measurement, and IDA-5 was good in the long-term 24 h measurement. The two measurement systems can complement each other in the case of the measurement time. Regarding battery performance, PS-1000 lasted approximately 5 days in a 1 ml/hr flow rate condition without recharging the battery. The occlusion pressure alarm delays of PS-1000 satisfied the conventional alarm threshold of occlusion pressure (300-800 mmHg). Average accuracy bolus volume was measured as 63%, 95%, and 98.5% with 0.1 ml, 1 ml, and 2 ml bolus volume presets, respectively. A 1 ml/hr flow rate measurement was evaluated as 2.08% of expanded uncertainty, with a 95% confidence level. Conclusion: PS-1000 showed a flow accuracy to be within the infusion pump standard, which is ± 5% of flow accuracy. Occlusion alarm of PS-1000 was quickly transmitted, resulting in better safety for patients receiving IV infusion of opioids. PS-1000 is sufficient for a portable smart PCA infusion pump.

A Study on the Microcomputer Based Infusion Pump (의료용 Infusion Pump 개발에 관한 연구)

  • 이경중;이윤선
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.63-68
    • /
    • 1984
  • The Infusion pump that is widely used in hospital has been designed. This system consists of microcomputer system, stepping motor control part and mechanical part for syringe driving. It has 450mmHg maximum pressure and $\pm$0.5% accuracy, and and especially keep the accent on the electrical and functional safety.

  • PDF

A Cloud-based Infusion Injector using Piezoelectric Micropump (피에조마이크로펌프를 이용한 클라우드기반 수액주입기)

  • Song, Young-Jin;Kang, Jung-Gu;Song, Geun-San
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.62-65
    • /
    • 2018
  • We will provides a micro-pump infusion injector with the cloud networking for remote control. The existing infusion injector with controlled manually have an uncomfortable to use it inconveniently. The proposed remote control infusion, infusion system enables the identification and control of injected amount through the IOT function on th WEB. The micro-pump used is a piezo electric pump manufactured by using MEMS technology, and the amount of charge is varied depending on the frequency magnitude through the micro-controller. The micro-pump can adjust the speed of the fluid depending on the frequency and can be from 0.1ml / min to 7ml / min when the frequency is from 3 to 110Hz.

A Study on the Development of a Infusion Pump based on an Active Muscle Pump (능동형 근육펌프 구조의 수액 주입 펌프 개발에 관한 연구)

  • Lee, Jeong-Whan;Lee, Sang-Yeob;Lee, Jung-Eun;Ahn, Ihn-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.443-449
    • /
    • 2022
  • In this study, in order to improve the disadvantages of the environmental error of the infusion set that performs infusion therapy in the existing clinical practice and to maximize the user's convenience by miniaturizing the existing infusion pump system, the structure of the muscle pump of the human vein was imitated. As a double check valve method, a method for preventing the backflow of fluid and discharging a constant fluid in one direction by external pressure was proposed. The proposed bio-mimic muscle pump uses a check valve that controls the flow of fluid in one direction and a silicone tube with elasticity, and a chamber is constructed. A peristaltic pump for applying intermittent pressure to the tube chamber was constructed using a multi-cam structure roller. In order to verify the performance of the proposed pump, optimization was performed while changing the number of multi-cam rollers and adjusting the speed of the roller driving motor, and the reproducibility of the instantaneous discharge amount and the continuous discharge amount of the pump was compared and tested. The performance of the muscle pump proposed in this study was verified through experiments that it can inject up to 1L of fluid within 12 hours, and that it is possible to inject the fluid with an accuracy of ±0.1ml. Real-time monitoring of the fluid injection volume through the bio-mimic muscle pump proposed in this study not only increases the convenience of the administrator, but also provides a precise fluid administration environment to more patients at a low cost, and additionally applies bubble detection and occlusion detection technology If so, it is believed that a safer medical environment can be provided to patients.

Smart syringe pumps for drug infusion during dental intravenous sedation

  • Seo, Kwang-Suk;Lee, Kiyoung
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.16 no.3
    • /
    • pp.165-173
    • /
    • 2016
  • Dentists often sedate patients in order to reduce their dental phobia and stress during dental treatment. Sedatives are administered through various routes such as oral, inhalation, and intravenous routes. Intravenous administration has the advantage of rapid onset of action, predictable duration of action, and easy titration. Typically, midazolam, propofol or dexmedetomidine are used as intravenous sedatives. Administration of these sedatives via infusion by using a syringe pump is more effective and successful than infusing them as a bolus. However, during intravenous infusion of sedatives or opioids using a syringe pump, fatal accidents may occur due to the clinician's carelessness. To prevent such risks, smart syringe pumps have been introduced clinically. They allow clinicians to perform effective sedation by using a computer to control the dose of the drug being infused. To ensure patient safety, various alarm features along with a drug library, which provides drug information and prevents excessive infusion by limiting the dose, have been added to smart pumps. In addition, programmed infusion systems and target-controlled infusion systems have also been developed to enable effective administration of sedatives. Patient-controlled infusion, which allows a patient to control his/her level of sedation through self-infusion, has also been developed. Safer and more successful sedation may be achieved by fully utilizing these new features of the smart pump.

Monitoring System of The Infusion Pump (인퓨전 펌프 모니터링 시스템 개발에 관한 연구)

  • Park, JunBeom;Koo, BonJae;Lee, WuJu;Lee, SangBin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.129-132
    • /
    • 2016
  • The importance of the infusion pump monitoring system has become amplified in accordance with the growth of IoT(Internet of Things) technology and medical devices. A monitoring system can be described as an essential part of infusion pump system because the patient must be observed all the time. Infusion pump monitoring system is significant to have better safety and efficiency. In this paper, we propose an efficient algorithm and scheme in the infusion monitoring system. In particular, the proposed algorithm based on the time of the database interlocking part was found to have a 30% higher efficiency than the conventional method.

Real-time Monitoring of the Actual Infusion Rate of Syringe Pump Using 2D Image Marker Tracking (2D 영상마커 추적 기반 시린지펌프 투약속도 실시간 감시 기술 개발)

  • Gun Ho, Kim;Young Jun, Hwang;Min Jae, Kim;Kyoung Won, Nam
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.92-98
    • /
    • 2023
  • Purpose: To propose a new infusion rate monitoring technique based on the 2D image marker tacking to improve patient safety by preventing syringe pump-related medication accidents due to decreased infusion rate control accuracy. Materials and Methods: The infusion rate of the syringe pump and drug residue in the pump-equipped syringe were monitored in real time by tracking the movement of the 2D image markers attached to the syringe pump. Results: The error rate between the set and the estimated infusion rates was 1.03, 0.66, 1.95, 0.23, and 1.05% when the infusion rate setting was 10, 20, 30, 40, and 50 mL/H, respectively. In addition, the error rate between the actual and the estimated drug residues was 1.04, 0.47, 0.60, 3.66, and 0.00% when the infusion rate setting was 10, 20, 30, 40, and 50 mL/H, respectively. Conclusion: Experimental results demonstrated that the proposed technique can increase the efficiency of the safety management system for seriously ill inpatients by decreasing a possibility of syringe pump-related medication accidents in hospitals.

Micro Tube Pump for an Implantable Drug Infusion Device (이식형 약물 주입 장치용 마이크로 튜브 펌프)

  • Bach, Du-Jin;Park, Jun-Woo;Lee, Duck-Hee;Lee, Chul-Han;Hong, So-Young;Jo, Yung-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • This paper proposes a tube pump composed of small-sized cams and followers for an implantable intrathecal drug infusion device. Each followers is driven by a cam and liquid is discharged by a sequential reciprocal motion of the followers. The advantage of this structure is that it allows the pump to be clean and valveless. To design a small-sized, low power pump some analysis were performed to determine the design parameters of the cam, follower and the tube. To verify the feasibility of the experiment, a prototype was manufactured and its operating characteristics were investigated. Experimental results were in accordance with the expected results obtained from analysis.