• Title/Summary/Keyword: Infrared temperature sensing

Search Result 159, Processing Time 0.032 seconds

Methane sensing characteristics and power consumption of MEMS gas sensor based on ZnO nanowhiskers (ZnO 나노휘스커 소재를 이용한 MEMS가스센서의 소비전력과 메탄 감응 특성 연구)

  • Moon, Hyung-Shin;Park, Sung-Hyun;Kim, Sung-Eun;Yu, Yun-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.462-468
    • /
    • 2010
  • A low power gas sensor with microheater was fabricated by MEMS technology. In order to heat up the gas sensing material to a operating temperature, a platinum(Pt) micro heater was built on to the micromachined Si substrate. The width and gap of microheater were $20\;{\mu}m$ and $4.5\;{\mu}m$, respectively. ZnO nanowhisker arrays were fabricated on a sensor device by hydrothermal method. The sensor device was deposited with ZnO seeds using PLD systems. A 200 ml aqueous solution of 0.1 mol zinc nitrate hexahydrate, 0.1 mol hexamethylenetetramine, and 0.02 mol polyethylenimine was used for growthing ZnO nanowhiskers. The power consumption to heat up the gas sensor to a operating temperature was measured and temperature distribution of sensor was analyzed by a Infrared Thermal Camera. The optimum temperature for highest sensitivity was found to be $250^{\circ}C$ although relatively high(64 %) sensitivity was obtained even at as low as $150^{\circ}C$. The power consumption was 72 mW at $250^{\circ}C$ and was only 25 mW at $150^{\circ}C$.

Functional Design for Applying to Environment of Landsat Imagery

  • Yun, Young-Bo;Chae, Gee-Ju;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.251-253
    • /
    • 2003
  • Landsat images were globally used to monitoring the Earth's. But it is not positively applied to a field of environment such as coastal environment, heat island effect and drought condition and so on. Until recently, Information about a ecology natural environment came to do by direct investigation. But Information about a ecology·natural environment of wide area were quickly getting possible with the progress of remote sensing technique. Specially, the up-to-date characteristic information about an ecology·natural environment as the basic intelligence for a country development activity are very important. So, it applies the satellite images that the periodic observation of data is possible. In this study, We planned the function which is possible helping the renewal of an ecology·natural environmental information using Landsat imagery. Also planned the DB suitable for these purpose. For application of thermal infrared band images we developed the function that extracts an isothermal line. It used the thermal infrared band images and it grasped a temperature distribution. The result is useful in analysis of the city heat island effectiveness.

  • PDF

Bio-Optical Modeling of Laguna de Bay Waters and Applications to Lake Monitoring Using ASTER Data

  • Paringit, EC.;Nadaoka, K.;Rubio, MCD;Tamura, H.;Blanco, Ariel C.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.667-669
    • /
    • 2003
  • A bio-optical model was developed specific for turbid and shallow waters. Special studies were carried out to estimate absorption and scattering properties as well as backscattering probability of suspended matter. The inversion of bio-optical model allows for direct retrieval of turbidity and chlorophyll- a from the visible-near infrared (VNIR) range sensor. Time-series satellite imagery from ASTER AM-1 sensor, were used to monitor the Laguna de Bay water quality condition. Spatial distribution of temperature for the lake was extracted from the thermal infrared (TIR) sensor. Corresponding field surveys were conducted to parameterize the bio -optical model. In-situ measurements include suspended particle and chlorophyll-a concentrations profiles from nephelometric devices and processing of water samples. Hyperspectral measurements were used to validate results of the bio -optical model and satellite- based estimation. This study provides a theoretical basis and a practical illustration of applying space- based measurements on an operational basis.

  • PDF

A Study on the Productivity Improvement of Thermal Infrared Camera an Optical Lens (열적외선 카메라용 광학계 생산성 향상에 관한 연구)

  • Kim, Sung-Yong;Hyun, Dong-Hun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.285-293
    • /
    • 2009
  • Thermal infrared cameras have been conducted actively in various application areas, such as military, medical service, industries and cars. Because of their characteristic of sensing the radiant heat emitted from subjects in the range of long-wavelength($3{\sim}5{\mu}m$ or $8{\sim}12{\mu}m$), and of materializing a vision system, when general optics materials are used, they don't react to the light in the range of long-wavelength, and can't display their optic functions. Therefore, the materials with the feature of higher refractive index, reacting to the range of long-wavelength, are to be used. The kinds of materials with the characteristic of higher refractive index are limited, and their features are close to those of metals. Because of these metallic features, the existing producing method of optical systems were direct manufacturing method using grinding method or CAD/CAM, which put limit on productivity and made it difficult to properly cope with the increasing demand of markets. GASIR, a material, which can be molded easily, was selected among infrared ray optics materials in this study, and the optical system was designed with two Aspheric lenses. Because the lenses are molded in the environment of high temperature and high pressure, they require a special metallic pattern. The metallic pattern was produced with materials with ultra hardness that can stand high temperature and high pressure. As for the lens mold, GMP(Glass Molding Press) of the linear transfer method was used in order to improve the productivity of optical systems for thermal infrared cameras, which was the goal of this paper.

  • PDF

Evaluations of Mn-Ni-Co type thermistor thin film for thermal infrared sensing element (열형 적외선 센싱소자용 Mn-Ni-Co계 써미스터 박막 특성 평가)

  • 전민석;최덕균
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.297-303
    • /
    • 2003
  • Mn-Ni-Co type thin films were prepared at various conditions by a rf magnetron sputtering system. At the condition. or substrate temperature of $300^{\circ}C$ and $Ar/O_2$= 10/0, a cubic spinel phase was obtained. When oxygen was included in process gas, a cubic spinel phase was not formed even after the thermal annealing at $900^{\circ}C$. The thermistor thin film had no other elements except Mn, Ni and Co. The infrared reflection spectra of the thermistor thin films showed that the films had somewhat high reflectance for incoming infrared ray with some angle. The etch rate of the thermistor thin films was about 63nm/min at a condition of DI water : $HNO_3$: HCl = 60 : 30 : 10 vol%. The B constant and temperature coefficient of resistance of the thermistor thin films were 3500 K and -3.95 %/K, respectively. The voltage responsivity of the thermistor thin film infrared sensor was 108.5 V/W and its noise equivalent power and specific detectivity were $5.1\times 10^{-7}$ W/$Hz^{-1/2}$ and $0.2\times 10^6$cm $Hz^{1/2}$/W, respectively.

The Comparison of Thermal Infrared Satellite Observation for Plume Assessment of Thermal Discharge (온배수 확산 평가를 위한 열적외선 위성관측 비교)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.4
    • /
    • pp.367-374
    • /
    • 2015
  • To examine the effect of thermal discharge from nuclear power plants, Sea Surface Temperature (SST) is one of the most important variables measured by satellite remote sensing. However, the study was not much comparison of field data and satellite SST from operational Landsat 8 Thermal Infrared Sensor(TIRS) and Landsat 7 ETM+. The Landsat 8 TIRS have 2 spilt Thermal Infrared channels but ETM+ uses one channel for extracting of SST. In spite of that this research carried out that Landsat 7 ETM+ have more profitable for correction of SST than Landsat 8 TIRS. The used 15 Landsat 7 and 8 Thermal Infrared data of path/row 114-36 were processed by SST algorithm of ENVI and IDL. The in-situ SST data from KHOA(Korea Hydrographic and Oceanographic Administration) compared with satellite SST and the accuracy of extracted SST were assessed by each field sites in-situ point data with time series satellite SST.

Detection of Thermal Plume Signature in and around the Younggwang coastal waters of Korea using LANDSAT & NOAA Thermal Infrared Data

  • Ahn, Yu-Hwan;Shanmugam, P.;Lee, Jae-Hak;Kang, Yong Q.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.869-872
    • /
    • 2003
  • The thermal contamination of the Younggwang coastal marine ecosystem has been investigated using space borne thermal infrared data acquired over the period 1985-2003 by the Landsat and NOAA satellites. The analysis of AVHRR data brought out the general pattern and extension of thermal plume while TM data yielded more accurate information about the plume shape, dimension, dispersion direction etc. The examination of sea surface temperature (SST) computed from these images clearly indicates that the thermal plume extends 70 to100km southward during summer and 50 to70km northwestward during winter monsoons. The maximum plume temperature was 29$^{\circ}C$ in summer and 12$^{\circ}C$ in winter. The comparative analysis shows that the temperature retrieved from TM is slightly higher (1.8$^{\circ}C$, 3$^{\circ}C$ and 2.2$^{\circ}C$ for the images of 98/11/10, 99/05/05 and 99/05/21 respectively) than those derived from AVHRR data. The correlation coefficient between the TM-derived SST and AVHRR-derived SST was 0.72.

  • PDF

Fog Sensing over the Korean Peninsula Derived from Satellite Observation of MODIS and GOES-9

  • Yoo, Jung-Moon;Jeong, Myeong-Jae;Yoo, Hye-Lim;Rhee, Ju-Eun;Hur, Young-Min;Ahn, Myoung-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.373-377
    • /
    • 2006
  • Seasonal threshold values for fog detection over the ten airport areas in the Korean Peninsula have been derived, using the satellite-observed data of polar-orbit (Aqua/Terra MODIS) and geostationary (GOES-9) during two years. The values are obtained from reflectance at $0.65{\mu}m\;(R_{0.65})$ and the difference in brightness temperature between $3.7{\mu}m\;and\;11{\mu}m\;(T_{3.7-11})$. In order to examine the discrepancy between the threshold values of two kinds of satellites, the following parameters have been analyzed under the condition of daytime/nighttime and fog/clear-sky, utilizing their simultaneous observations over the Seoul Metropolitan Area. The parameters are the brightness temperature at $3.7{\mu}m\;(T_{3.7})$, the temperature at $11{\mu}m\;(T_{11}$, and $T_{3.7-11}$ for day and night. The $R_{0.65}$ data are additionally included in the daytime. The GOES-9 thresholds over the seven airport areas except the Cheongju airport have revealed the accuracy of 50% in the daytime and 70% in the nighttime, based on statistical verification for the independent samples as follows; FAR, POD and CSI. However, the accuracy decreases in the foggy cases with twilight, precipitation, short persistence, or the higher cloud above fog.

Cloud Cover Analysis from the GMS/S-VISSR Imagery Using Bispectral Thresholds Technique (GMS/S-VISSR 자료로부터 Bispectral Thresholds 기법을 이용한 운량 분석에 관하여)

  • 서명석;박경윤
    • Korean Journal of Remote Sensing
    • /
    • v.9 no.1
    • /
    • pp.1-19
    • /
    • 1993
  • A simple bispectral threshold technique which reflects the temporal and spatial characteristics of the analysis area has been developed to classify the cloud type and estimate the cloud cover from GMS/S-VISSR(Stretched Visible and Infrared Spin Scan Radiometer) imagery. In this research, we divided the analysis area into land and sea to consider their different optical properties and used the same time observation data to exclude the solar zenith angle effects included in the raw data. Statistical clear sky radiance(CSRs) was constructed using maximum brightness temperature and minimum albedo from the S-VISSR imagery data during consecutive two weeks. The CSR used in the cloud anaysis was updated on the daily basis by using CSRs, the standard deviation of CSRs and present raw data to reflect the daily variation of temperature. Thresholds were applied to classify the cloud type and estimate the cloud cover from GMS/S-VISST imagery. We used a different thresholds according to the earth surface type and the thresholds were enough to resolve the spatial variation of brightness temperature and the noise in raw data. To classify the ambiguous pixels, we used the time series of 2-D histogram and local standard deviation, and the results showed a little improvements. Visual comparisons among the present research results, KMA's manual analysis and observed sea level charts showed a good agreement in quality.

Evaluation of Sensitivity and Retrieval Possibility of Land Surface Temperature in the Mid-infrared Wavelength through Radiative Transfer Simulation (복사전달모의를 통한 중적외 파장역의 민감도 분석 및 지표면온도 산출 가능성 평가)

  • Choi, Youn-Young;Suh, Myoung-Seok;Cha, DongHwan;Seo, DooChun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1423-1444
    • /
    • 2022
  • In this study, the sensitivity of the mid-infrared radiance to atmospheric and surface factors was analyzed using the radiative transfer model, MODerate resolution atmospheric TRANsmission (MODTRAN6)'s simulation data. The possibility of retrieving the land surface temperature (LST) using only the mid-infrared bands at night was evaluated. Based on the sensitivity results, the LST retrieval algorithm that reflects various factors for night was developed, and the level of the LST retrieval algorithm was evaluated using reference LST and observed LST. Sensitivity experiments were conducted on the atmospheric profiles, carbon dioxide, ozone, diurnal variation of LST, land surface emissivity (LSE), and satellite viewing zenith angle (VZA), which mainly affect satellite remote sensing. To evaluate the possibility of using split-window method, the mid-infrared wavelength was divided into two bands based on the transmissivity. Regardless of the band, the top of atmosphere (TOA) temperature is most affected by atmospheric profile, and is affected in order of LSE, diurnal variation of LST, and satellite VZA. In all experiments, band 1, which corresponds to the atmospheric window, has lower sensitivity, whereas band 2, which includes ozone and water vapor absorption, has higher sensitivity. The evaluation results for the LST retrieval algorithm using prescribed LST showed that the correlation coefficient (CC), the bias and the root mean squared error (RMSE) is 0.999, 0.023K and 0.437K, respectively. Also, the validation with 26 in-situ observation data in 2021 showed that the CC, bias and RMSE is 0.993, 1.875K and 2.079K, respectively. The results of this study suggest that the LST can be retrieved using different characteristics of the two bands of mid-infrared to the atmospheric and surface conditions at night. Therefore, it is necessary to retrieve the LST using satellite data equipped with sensors in the mid-infrared bands.