Abstract
A simple bispectral threshold technique which reflects the temporal and spatial characteristics of the analysis area has been developed to classify the cloud type and estimate the cloud cover from GMS/S-VISSR(Stretched Visible and Infrared Spin Scan Radiometer) imagery. In this research, we divided the analysis area into land and sea to consider their different optical properties and used the same time observation data to exclude the solar zenith angle effects included in the raw data. Statistical clear sky radiance(CSRs) was constructed using maximum brightness temperature and minimum albedo from the S-VISSR imagery data during consecutive two weeks. The CSR used in the cloud anaysis was updated on the daily basis by using CSRs, the standard deviation of CSRs and present raw data to reflect the daily variation of temperature. Thresholds were applied to classify the cloud type and estimate the cloud cover from GMS/S-VISST imagery. We used a different thresholds according to the earth surface type and the thresholds were enough to resolve the spatial variation of brightness temperature and the noise in raw data. To classify the ambiguous pixels, we used the time series of 2-D histogram and local standard deviation, and the results showed a little improvements. Visual comparisons among the present research results, KMA's manual analysis and observed sea level charts showed a good agreement in quality.