• 제목/요약/키워드: Infrared optic

검색결과 78건 처리시간 0.023초

적외선 체열촬영시스템을 위한 고속 광주사기의 구현 (Realization of a High Speed Optic Scanner for Infrared Thermal Imaging)

  • 이수열
    • 대한의용생체공학회:의공학회지
    • /
    • 제16권1호
    • /
    • pp.43-48
    • /
    • 1995
  • A high speed optic scanner capable of 16 frames/sec imaging has been developed for the realization of the infrared thermal Imaging system with a single element infrared sensor. The high speed optic scanner is composed of a rotating polygon mirror for horizontal scanning, a flat mirror mounted on a galvanometer for vertical scanning, and a spherical mirror. It has been experimentally found that the optic scanner is capable of 16 framesllsec imaging with the frame matrix size of 256 x 64.

  • PDF

MRI의 현황과 전망

  • 전희국
    • 대한의용생체공학회:의공학회지
    • /
    • 제9권1호
    • /
    • pp.125-130
    • /
    • 1988
  • In the conventional infrared imaging system, complex infrared lens systems are usually used for directing collimated narrow infrared beams into the high speed 2-dimensional optic scanner. In this paper, a simple reflective infrared optic system with a 2-dimensional optic scanner is proposed for the realization of medical infrared thermography system. It has been experimentally proven that the intfrared thermography system composed of the proposed optic system has the temperature resolution of $0.1^{\circ}C$ under the spatial resolution of lmrad, the image matrix size of $256 {\times} 240, $ and tile imaging time of 4 seconds.

  • PDF

적외선 체열촬영시스템을 위한 광학계의 구성 (Realization of Optic Systems for the Infrared Thermography)

  • 이수열;우응제;조민형
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권1호
    • /
    • pp.97-104
    • /
    • 1994
  • In the conventional infrared imaging system, complex infrared lens systems are usually used for directing collimated narrow infrared beams into the high speed 2-dimensional optic scanner. In this paper, a simple reflective infrared optic system with a 2-dimensionaloptic scanner is proposed for the realization of medical infrared thermography system. It has been experimentally proven that the infrared thermography system composed ofthe proposed optic system has the temperature resolution of $0.1{\circ}C$ under the spatial resolution of 1mrad, the image matrix size of $256{\times}240$, and the imaging time of 4 seconds.

  • PDF

Chalcogenide 광섬유를 이용한 호흡측정 센서 개발을 위한 기초 연구 (Feasibility study on the development of respiration sensor using a chalcogenide optical fiber)

  • 유욱재;조동현;장경원;오정은;이봉수;탁계래
    • 센서학회지
    • /
    • 제16권5호
    • /
    • pp.331-336
    • /
    • 2007
  • In this study, we have fabricated an infrared optical fiber based sensor which can monitor the respiration of a patient. The design of a chalcogenide optical fiber based sensor is suitable for insertion into a high electro-magnetic field environment because the sensor consists of low cost and compact mid-infrared components such as an infrared light source, a chalcogenide optical fiber and a thermopile sensor. A fiber-optic respiration sensor is capable of detecting carbon dioxide ($CO_{2}$) in exhalation of a patient using the infrared absorption characteristics of carbon gases. The modulated infrared radiation due to the presence of carbon dioxide is guided to the thermopile sensor via a chalcogenide receiving fiber. It is expected that a mid-infrared fiber-optic respiration sensor which can be developed based on the results of this study would be highly suitable for respiration measurements of a patient during the procedure of an MRI.

플라스틱 광섬유를 이용한 조명시스템 개발과 특성 분석 (Development and Performance Property Investigation of Lighting System using Plastic Optical Fiber)

  • 신상욱;이진우
    • 조명전기설비학회논문지
    • /
    • 제24권12호
    • /
    • pp.25-32
    • /
    • 2010
  • Compared to general lighting method, the lighting system that uses optic fiber can provide only the visible light of good quality to subject by eliminating ultraviolet ray and infrared ray. Thanks to this merit, it is possible to prevent the hard phenomenon of subject caused by ultraviolet ray and infrared ray and to provide the agreeable light environment. This study developed indoors illumination system of high color rendering on the basis of plastic optic fiber with excellent optical property and processing to substitute halogen lamp which has been used for excellent color rendering in spite of low efficiency and short life. Producing pilot product of the designed illumination system and evaluating the property of electric and optical property, ultraviolet ray radiation quantity and temperature property, this study verified the excellence of suggested lighting system of plastic optic fiber.

Skin depth profiling by using fiber optic probes in the near infrared

  • Woo, Young-Ah;jung, Suh-Eun;Kim, Hyo-Jin
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book II
    • /
    • pp.218-218
    • /
    • 2003
  • Recently we showed the prototype portable device for the determination of human skin moisture by using near infrared spectroscopy. In order to optimize the acquiring condition of NIR spectrum of skin and control the target information of water depending the site such as epidermis and dermis, skin depth profiling was investigated changing the distance between illuminations and receiving of radiation in the terminal of fiber probe. The colleted light information could be controlled by changing the distance of the fiber optic probes. It was confirmed that the longer distance we used, the deeper site from the skin surface we could get information from in this study. Four kinds of probes with distances such as 0.03 mm, 0.1 mm, 0.5 mm, and 1.0 mm were used. In addition, the gap size from 0.3 mm to 3.0 mm was studied to control the intensity of water absorbance effectively and to avoid saturation of water absorption. We also investigated the reference materials depending the reflectance ratio for water absorption not to be saturated because of the strong absorptivity of water. Furthermore, spectroscopic information regarding free water and bound water around 1850 nm was investigated by using the different distance of fiber optic probes. This study would be great help to control the spectroscopic information of water to be measured depending the site where water exists.

  • PDF

휴대용 근적외선 분광분석기를 이용한 비침투 혈당 측정 (Non-invasive Blood Glucose Measurement by a Portable Near Infrared (NIR) System)

  • 강나루;우영아;차봉수;이현철;김효진
    • 약학회지
    • /
    • 제46권5호
    • /
    • pp.331-336
    • /
    • 2002
  • The purpose of this study is to develop a non-invasive blood glucose measurement method by a portable near infrared (NIR) system which was newly integrated by our lab. The portable NIR system includes a tungsten halogen lamp, a specialized reflectance fiber optic probe and a photo diode array type InGaAs detector; which was developed by a microchip technology based on the lithography. Reflectance NIR spectra of different parts of human body (finger tip, earlobe, and inner lip) were recorded by using a fiber optic probe. The spectra were collected over the spectral range 1100 ∼ 1740 nm. Partial least squares regression (PLSR) was applied for the calibration and validation for the determination of blood glucose. The calibration model from earlobe spectra presented better results, showing good correlation with a glucose oxidase method which is a mostly used standard method. This model predicted the glucose concentration for validation set with a SEP of 33 mg/dL. This study indicated the feasibility for non-invasive monitoring of blood glucose by a portable near infrared system.

근적외선 분광 분석을 위한 음향광학변조필터의 설계 및 교정 (Design and Calibration of Acousto-Optic Tunable Filter(AOTF) for Near Infrared Spectral Analysis)

  • 유장우;김대석;곽윤근;김수현;이윤우;황인덕
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1697-1702
    • /
    • 2004
  • In this paper, we proposed the design and calibration method for the near infrared Acousto-Optic Tunable Filter (AOTF). The theory and design principles of AOTF for the visible light are well known since I.C.Chang has developed the parallel tangent condition for the non-collinear AOTF. Deflection angle, frequency-wavelength relation, spectral resolution, etc. were calculated based on the theory of AOTF. From this result, important parameters - incident and acoustic angle - to fabricate AOTF were decided. We measured the spectral resolution and the relation between electrical driving frequency and the Optical wavelength of diffracted light to calibrate the near infrared AOTF. About 40 ∼ 80 MHz electrical frequency was required to get 1200 ∼ 2200 nm near infrared light. Spectral resolution was less than 10 nm in the near infrared region.

음향광학 파장선택 필터 기반 파장훑음 레이저를 이용한 시간-인코딩 된 근적외선 흡광도 측정 비교 연구 (Time-encoded Near-infrared (NIR) Spectroscopic Comparison of Absorbance Measurement Using an Acousto-optic NIR Swept Laser Source)

  • 장한솔;김경훈;한가희;조재두;김창석
    • 한국광학회지
    • /
    • 제28권1호
    • /
    • pp.22-27
    • /
    • 2017
  • 본 논문에서는 음향광학 파장선택 필터(acousto-optic tunable filter) 기반의 파장훑음 레이저(wavelength swept laser)를 이용한 시간-인코딩 근적외선 분광 기술(time-encoded near-infrared spectroscopy)을 제안하였다. 파장훑음 레이저는 800 nm 근처 영역에서 이득 스펙트럼을 가지는 반도체 광 증폭기(semiconductor optical amplifier)를 기반으로 제작되었으며, 음향광학 파장선택 필터를 공진기 내부에 삽입함으로써 음향광학 파장선택 필터에 인가되는 전기적 라디오주파수에 따라 출력 파장을 선택할 수 있도록 하였다. 본 연구에서는 종래의 기술인 백색광 분광기 기반의 검출부 분광 근적외선 분광 기술과 제안된 파장훑음 레이저 기반의 광원부 분광 근적외선 분광 기술을 각각 이용하여 근적외선 흡수 염료 샘플의 흡광도를 각기 측정하여 실험적으로 비교함으로써 본 연구에서 제안하는 음향광학 파장선택 필터 기반 파장훑음 레이저를 이용한 근적외선 분광 기술의 특성을 증명하였다.