• 제목/요약/키워드: Infrared microscopy

검색결과 554건 처리시간 0.022초

Thermal Characterization of Individual Pixels in Microbolometer Image Sensors by Thermoreflectance Microscopy

  • Ryu, Seon Young;Choi, Hae Young;Kim, Dong Uk;Kim, Geon Hee;Kim, Taehyun;Kim, Hee Yeoun;Chang, Ki Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권5호
    • /
    • pp.533-538
    • /
    • 2015
  • Thermal characterization of individual pixels in microbolometer infrared image sensors is needed for optimal design and improved performance. In this work, we used thermoreflectance microscopy on uncooled microbolometer image sensors to investigate the thermal characteristics of individual pixels. Two types of microbolometer image sensors with a shared-anchor structure were fabricated and thermally characterized at various biases and vacuum levels by measuring the temperature distribution on the surface of the microbolometers. The results show that thermoreflectance microscopy can be a useful thermal characterization tool for microbolometer image sensors.

Infrared Scanning Near-Field Optical Microscopy (IR-SNOM) Below the Diffraction Limit

  • Sanghera, J.S.;Aggarwal, I.D.;Cricenti, A.;Generossi, R.;Luce, M.;Perfetti, P.;Margoritondo, G.;Tolk, N.;Piston, D.
    • 세라미스트
    • /
    • 제10권3호
    • /
    • pp.55-66
    • /
    • 2007
  • Infrared Scanning Near-field Optical Microscopy (IR-SNOM) is an extremely powerful analytical instrument since it combines IR spectroscopy's high chemical specificity with SNOM's high spatial resolution. In order to do this in the infrared, specialty chalcogenide glass fibers were fabricated and their ends tapered to generate SNOM probes. The fiber tips were installed in a modified near field microscope and both inorganic and biological samples illuminated with the tunable output from a free-electron laser located at Vanderbilt University. Both topographical and IR spectral images were simultaneously recorded with a resolution of ${\sim}50\;nm$ and ${\sim}100\;nm$, respectively. Unique spectroscopic features were identified in all samples, with spectral images exhibiting resolutions of up to ${\lambda}/60$, or at least 30 times better than the diffraction limited lens-based microscopes. We believe that IR-SNOM can provide a very powerful insight into some of the most important bio-medical research topics.

  • PDF

Hot stage microscopy and its applications in pharmaceutical characterization

  • Arun Kumar;Pritam Singh;Arun Nanda
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.12.1-12.11
    • /
    • 2020
  • Hot stage microscopy (HSM) is a thermal analysis technique that combines the best properties of thermal analysis and microscopy. HSM is rapidly gaining interest in pharmaceuticals as well as in other fields as a regular characterization technique. In pharmaceuticals HSM is used to support differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) observations and to detect small changes in the sample that may be missed by DSC and TGA during a thermal experiment. Study of various physical and chemical properties such sample morphology, crystalline nature, polymorphism, desolvation, miscibility, melting, solid state transitions and incompatibility between various pharmaceutical compounds can be carried out using HSM. HSM is also widely used to screen cocrystals, excipients and polymers for solid dispersions. With the advancements in research methodologies, it is now possible to use HSM in conjunction with other characterization techniques such as Fourier transform infrared spectroscopy (FTIR), DSC, Raman spectroscopy, scanning electron microscopy (SEM) which may have additional benefits over traditional characterization techniques for rapid and comprehensive solid state characterization.

An in Depth Study of Crystallinity, Crystallite Size and Orientation Measurements of a Selection of Poly(Ethylene Terephthalate) Fibers

  • Karacan Ismail
    • Fibers and Polymers
    • /
    • 제6권3호
    • /
    • pp.186-199
    • /
    • 2005
  • A selection of commercially available poly(ethy1ene terephtha1ate) fibers with different degrees of molecular alignment and crystallinity have been investigated utilizing a wide range of techniques including optical microscopy, infrared spectroscopy together with thermal and wide-angle X-ray diffraction techniques. Annealing experiments showed increased molecular alignment and crystallinity as shown by the increased values of birefringence and melting enthalpies. Crystallinity values determined from thermal analysis, density, unpolarized infrared spectroscopy and X-ray diffraction are compared and discussed in terms of the inherent capabilities and limitations of each measurement technique. The birefringence and refractive index values obtained from optical microscopy are found to decrease with increasing wavelength of light used in the experiments. The wide-angle X-ray diffraction analysis shows that the samples with relatively low orientation possess oriented non-crystalline array of chains whereas those with high molecular orientation possess well defined and oriented crystalline array of chains along the fiber axis direction. X-ray analysis showed increasing crystallite size trend with increasing molecular orientation. SEM images showed micro-cracks on low oriented fiber surfaces becoming smooth on highly oriented fiber surfaces. Excellent bending characteristics were observed with knotted fibers implying relatively easy fabric formation.

Structural Characterization and Dielectric Studies of Superparamagnetic Iron Oxide Nanoparticles

  • Sivakumar, D.;Naidu, K. Chandra Babu;Nazeer, K. Prem;Rafi, M. Mohamed;kumar, G. Ramesh;Sathyaseelan, B.;Killivalavan, G.;Begam, A. Ayisha
    • 한국세라믹학회지
    • /
    • 제55권3호
    • /
    • pp.230-238
    • /
    • 2018
  • Superparamagnetic iron oxide nanoparticles (SPIONs) have been prepared without using surfactants to assess their stability at different time intervals. The synthesized particles were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet-visible-near infrared spectroscopy, and energy dispersive spectroscopy. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images of the samples were also investigated. The average particle size was measured to be 12.7 nm even in the polydispersed form. The magnetic and dielectric characteristics of the $Fe_3O_4$ nanoparticles have also been studied and discussed in detail.

Removal of Uranium from Aqueous Solution by Alginate Beads

  • Yu, Jing;Wang, Jianlong;Jiang, Yizhou
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.534-540
    • /
    • 2017
  • The adsorption of uranium (VI) by calcium alginate beads was examined by batch experiments. The effects of environmental conditions on U (VI) adsorption were studied, including contact time, pH, initial concentration of U (VI), and temperature. The alginate beads were characterized by using scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. Fourier transform infrared spectra indicated that hydroxyl and alkoxy groups are present at the surface of the beads. The experimental results showed that the adsorption of U (VI) by alginate beads was strongly dependent on pH, the adsorption increased at pH 3~7, then decreased at pH 7~9. The adsorption reached equilibrium within 2 minutes. The adsorption kinetics of U (VI) onto alginate beads can be described by a pseudo first-order kinetic model. The adsorption isotherm can be described by the Redlich-Peterson model, and the maximum adsorption capacity was 237.15 mg/g. The sorption process is spontaneous and has an exothermic reaction.

A brief review of non-invasive brain imaging technologies and the near-infrared optical bioimaging

  • Beomsue Kim;Hongmin Kim;Songhui Kim;Young-ran Hwang
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.9.1-9.10
    • /
    • 2021
  • Brain disorders seriously affect life quality. Therefore, non-invasive neuroimaging has received attention to monitoring and early diagnosing neural disorders to prevent their progress to a severe level. This short review briefly describes the current MRI and PET/CT techniques developed for non-invasive neuroimaging and the future direction of optical imaging techniques to achieve higher resolution and specificity using the second near-infrared (NIR-II) region of wavelength with organic molecules.

Fourier transform infrared spectroscopy를 이용한 SiNx박막의 수소농도 연구 (Study of the hydrogen concentration of SiNx film by Fourier transform infrared spectroscopy)

  • 이석열;최재하;제지홍;이임수;안병철
    • 한국진공학회지
    • /
    • 제17권3호
    • /
    • pp.215-219
    • /
    • 2008
  • 실리콘 웨이퍼 위에 Plasma Enhanced Chemical Vapor Deposition (PECVD) 방법으로 증착 된 SiNx 박막의 수소 함량을 측정하였다. 제작된 SiNx 박막은 Fourier Transform Infrared Spectroscopy (FT-IR) 사용하여 박막의 수소함량과 결합상태를 확인하였으며, Atomic Force Microscopy (AFM) 측정을 통하여 박막의 표면 거칠기를 비교, 시료의 조성비 평가를 위하여 Rutherford Backscattering Spectrometry (RBS)을 사용하였다. 또한 SiNx박막의 조성확인을 위하여 Photoluminescence(PL)를 이용하여 FT-IR spectrum의 결과와 비교 해석하였다. FT-IR에서 NH의 수소함량(at%)이 0.92 %에서 0.64 %로 낮아질 수록 AFM을 이용한 표면 거칠기는 12.8 $\AA$에서 10.8 $\AA$로 낮아지고, Si양이 상대적으로 많아지는 것을 PL에서 확인하였으며, RBS에서도 시뮬레이션을 통해 비슷한 결과를 얻을 수 있었는데, 이는 FT-IR을 사용함으로써 SiNx 박막의 수소 함량의 측정이 가능하다는 것을 보여주므로 단위공정에서 신속하게 SiNx 박막 분석이 가능함을 알 수 있었다.

Atomic Force Microscopy and Specular Reflectance Infrared Spectroscopic Studies of the Surface Structure of Polypropylene Treated with Argon and Oxygen Plasmas

  • Seo Eun-Deock
    • Macromolecular Research
    • /
    • 제12권6호
    • /
    • pp.608-614
    • /
    • 2004
  • Isotactic polypropylene (PP) surfaces were modified with argon and oxygen plasmas using a radio­frequency (RF) glow discharge at 240 mTorr and 40 W. The changes in topography and surface structure were investigated by atomic force microscopy (AFM) in conjunction with specular reflectance of infrared (IR) microspectroscopy. Under our operating conditions, the AFM image analysis revealed that longer plasma treatment resulted in significant ablation on the PP surface, regardless of the kind of plasma employed, but the topography was dependent on the nature of the gases. Specular reflectance IR spectroscopic analysis indicated that the constant removal of surface material was an important ablative aspect when using either plasma, but the nature of the ablative behavior and the resultant aging effects were clearly dependent on the choice of plasma. The use of argon plasma resulted in a negligible aging effect; in contrast, the use of oxygen plasma caused a noticeable aging effect, which was due to reactions of trapped or isolated radicals with oxygen in air, and was partly responsible for the increased surface area caused by ablation. The use of oxygen plasma is believed to be an advantageous approach to modifying polymeric materials with functionalized surfaces, e.g., for surface grafting of unsaturated monomers and incorporating oxygen-containing groups onto PP.