• Title/Summary/Keyword: Infrared lamp

Search Result 118, Processing Time 0.022 seconds

A Study on Heat Flux Characteristics of Tubular Quartz Lamp for Thermal Load Design of High Temperature Structural Test (석영 가열램프의 열 유속 특성 파악을 통한 고온 구조시험의 열 하중 설계에 관한 연구)

  • Kim, Junhyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.355-363
    • /
    • 2022
  • Development of supersonic flying vehicle is one of the most latest issue in modern military technology. Specifically, structural integrity of supersonic flying vehicle can be verified by high temperature structural test. High temperature structural test is required to consider thermal load caused by aerodynamic heating while applying structural load simultaneously. Tubular quartz lamps are generally used to generate thermal load by emitting infrared radiation. In this study, modified heat flux model of tubular quartz lamp is proposed based on existing model. Parameters of the proposed model are optimized upon measured heat flux in three dimensions. Finally, thermal load of plate specimen is designed by the heat flux model. In conclusion, it is possible to predict heat flux applied on plate specimen and desired thermal load of high temperature structural test can be obtained.

Effect of Supplementary or Heating Lamps on the Yield, Vase Life, and Leaf Color of Cut Rose (보광등과 난방등이 절화장미 수확량, 절화수명, 엽색에 미치는 영향)

  • Jeong, Kyeong Jin;Yun, Jae Gill;Chon, Young Shin;Shin, Hyun Suk;Lee, Sang Woo
    • Journal of Bio-Environment Control
    • /
    • v.27 no.2
    • /
    • pp.158-165
    • /
    • 2018
  • The effects of different kinds of supplementary lighting or heating lamps on the yield, cut flower life, and leaf color of cut rose were compared and analyzed. For this purpose, light emitting diode lamp (LED), metal halide lamps (MH), and high-pressure sodium lamps (HPS) as the supplementary lamps, and carbon fiber infrared lamp (NCFI) were installed on hydroponic cultivation bed in a cut rose farm. The yield of cut flower rose and the number of marketable flowers were greatly increased in spring and autumn by HPS treatment, but not in winter. The length of flower stalk was longer than that of control in the spring but decreased in winter. It seemed likely that the shorter flower stalk in winter was due to the shortened period of vegetative growth compared to the control because flowering was promoted by supplementary lighting. Vase life was not different among treatments in the autumn when the lighting time was short, but in winter, it was prolonged to 3 more days by only HPS, compared with the control. Leaf color was significantly affected by light treatment in winter rather than autumn. Leaf color was darkened in all supplementary lamps (LED, MH, HPS) treatment, whereas NCFI was similar to the control in leaf color. In conclusion, HPS is considered to be a very good supplementary lamp because it increases the length of flower stalk and the yield and prolongs vase life in cut roses. Even though NCFI could function as a heating lamp radiating a lot of heat, it was considered that the role as a supplementary light is unsatisfactory because the number of marketable flowers decreases and the quality index of cut rose deteriorates by NCFI.

Removing Malodor Using Photocatalyst and Infrared (광촉매와 적외선을 이용한 악취저감)

  • Jeon, Tae-Yeong;Kim, Jae-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.528-533
    • /
    • 2014
  • Recently, people interest in environmental pollution and attempt to improve the indoor air quality contaminated with various pollutants since it is very important to construct healthy and comfortable living environment. In the current study, we used the technology that has first received the certification of green technology for improving the removal efficiency of malodor causing substances. This green technology is a new technology to increase the reactivity of the odorous substances with OH radicals for oxidation reaction by using an infrared lamp in the existing air purification system. Comparing the efficiency of the green technology with the infrared lamp to that of the existing technology of air cleaner, there was a difference in the decomposition efficiency depending on the initial concentrations and speciation of the odorous substances. The removal efficiencies of contaminants were enhanced by 16.9 and 13.2% at low and high concentrations, respectively.

A Study on Reliability Validation by Infrared Thermography of Composite Material Blade for Wind Turbine Generator (풍력발전용 복합소재 블레이드의 적외선 열화상 검사를 이용한 신뢰성 검증)

  • Kang, Byung Kwon;Nam, Mun Ho;Lim, Ik Sung
    • Journal of Applied Reliability
    • /
    • v.14 no.3
    • /
    • pp.176-181
    • /
    • 2014
  • In these days, new and renewable energy is getting popular around globe and wind power generator is one of the renewable energy. In this study, we conducted a study on defect detection of composite material blade for wind power generator by applying active infrared thermography and produced a defect test piece by applying composite material used for blade of wind power generator. An infrared thermal camera and 2 kW halogen lamp are used for the purpose of research as equipments. Also, we analyzed temperature characteristic by using infrared thermal camera after checking a heat source on a test piece and found effectiveness of infrared thermography to blade of wind power generator by detecting defects resulting from temperature difference of a test piece, which eventually improve the safety and reliability of the composite material blade.

A Computational Study on the Cooling Performance of a Near Infrared Radiative Heating System (근적외선 가열 시스템의 냉각 성능에 대한 수치적인 연구)

  • Yoo, Keun-Pyo;Han, Minsub;Kim, Jae-Duck;Choi, Won-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.5
    • /
    • pp.289-296
    • /
    • 2013
  • A near infrared (NIR) heating system has advantages over the conventional convection-based systems, in terms of heating uniformity and energy efficiency. When it is over-heated during its operation, the radiation lamp gets blackened, and the life of the radiation module becomes severely limited. The heat transfer system in the module is based on a high operating-temperature, and the radiation makes it difficult to analyze in detail the reliability issue, with an experimental approach alone. We developed a numerical heat-transfer model of the NIR heating system. We applied a ray-tracing method on the radiative heat transport, and a finite volume method on the conductive and convective systems, respectively. The cooling performance of the system is presented, based on the energy and flow distributions in the module. The factors that directly affect the module life are analyzed, such as the surface temperatures of the lamp glass and the reflector, and design improvements are discussed.

Optimum Wattage and Installation Height of Nano-Carbon Fiber Infrared Heating Lamp for Heating Energy Saving in Plug Seedling Production Greenhouse in Winter Season (동절기 공정육묘장의 난방 에너지 절감을 위한 나노탄소섬유적외선 난방등의 적정 전력과 설치 높이)

  • Kim, Hye Min;Kim, Young Jin;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.302-307
    • /
    • 2016
  • The aim of this study was to examine the optimum wattage and installation height using nano-carbon fiber infrared heating lamp (NCFIHL) for heating energy saving and plug seedling production in plug seedling production greenhouse in winter season. NCFIHL of 700 and 900 W was installed over the bed ($1.2{\times}2.4m$) as 0.7, 1.0, and 1.3 m height, respectively, for the production of grafted watermelon seedling in venlo-type glasshouse. Watermelon (Citrullus lanatus (Thunb.) Manst.) 'Jijonggul' and gourd (Lagenaria leucantha Rusby.) 'Sunbongjang' were used as scions and rootstocks, respectively. The scions and rootstocks were grafted by single cotyledon ordinary splice grafting. Light intensity of NCFIHL was below the $1{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ in all treatment. Spectral distributions of NCFIHL presented mostly infrared area. When outside air temperature was below $10^{\circ}C$, 700 and 900 W NCFIHL installed with 0.7 m height treatment and 900 W NCFIHL installed with 1.0 m height treatment maintained the setting air temperature ($20^{\circ}C$) at night. In the result of taking thermal imaging, the grafted watermelons were getting warm fast in 900 W NCFIHL installed with 0.7 m height treatment at night. Compactness of the grafted watermelons was the greatest in 700 W NCFIHL installed with 1.3 m height treatment. The results indicate that NCFIHL installed above 1.0 m height using 700 W was suitable for production of plug seedling.

Novel optical properties of amorphous ferric hydroxide in near infrared region

  • Kang, Tae Yeon;Chae, Weon-Sik
    • Rapid Communication in Photoscience
    • /
    • v.4 no.2
    • /
    • pp.34-36
    • /
    • 2015
  • New spectroscopic characteristics of amorphous ferric hydroxide ($Fe(OH)_3$), interestingly in the near infrared (NIR) region, are presented in this study. The absorption spectrum of ferric hydroxide covers wide spectral regions from ultraviolet to NIR (200~900 nm). Unique emission bands were newly observed in the NIR regions (800~1400 nm). Several bands of this NIR emission are quiet well overlapped with the combinational vibrational absorption bands of water. From photothermal conversion study, very interestingly, temperature of aqueous mixture solution including the amorphous ferric hydroxide was significantly increased from ambient temperature to $38^{\circ}C$ for 30 minutes under irradiation of a standard helium lamp.

Automatic Side Mirror and Room Mirror Adjustment System using 3D Location of Driver′s Eyes (운전자 눈 위치를 이용한 사이드미러와 룸미러 자동조절시스템)

  • 노광현;박기현;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.7-7
    • /
    • 2000
  • This paper describes a mirror control system that can adjust the location of side and room mirror of the vehicle automatically using 3D coordinates to monitor the location of driver's eyes. Through analysis of the image inputted by two B/W CCD camera and infrared lamps installed on top of the driver's dashboard, we can estimate the values of 3D coordinate of the driver's eyes. Using these values, this system can determine the absolute position of each mirror and activate each actuator to the appropriate position. The stereo vision system can detect the driver's eyes whether it is day or night by virtue of infrared Lamps. We have tested this system using 10 drivers who drive a car currently, and most of the drivers were satisfied with the convenience of this system.

  • PDF

A Study on Concentration Detection Technology of Air Mixing Gas according to Temperature Variation for Refrigerator Foam System (온도변화에 따른 냉장고 발포시스템용 에어믹싱가스 농도검출기술에 관한 연구)

  • Koo, Yeong-Mok;Yang, Jun-Suk;Jo, Sang-Young;Kim, Min-Seong;Noh, Chun-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.95-100
    • /
    • 2016
  • This study proposes the temperature compensation algorithm using thermopile detector for non-dispersive infrared Nitrogen gas sensor. From the output voltage of thermistor that is attached onto the infrared detector, the ambient temperature was extracted. The effects of temperatures on the properties of sensor module characteristics of narrow bandpass filter, optical cavity and infrared lamp, and air mixing gas have been introduced in order to implement the temperature compensation algorithm.

Non-invasive Blood Glucose Measurement by a Portable Near Infrared (NIR) System (휴대용 근적외선 분광분석기를 이용한 비침투 혈당 측정)

  • 강나루;우영아;차봉수;이현철;김효진
    • YAKHAK HOEJI
    • /
    • v.46 no.5
    • /
    • pp.331-336
    • /
    • 2002
  • The purpose of this study is to develop a non-invasive blood glucose measurement method by a portable near infrared (NIR) system which was newly integrated by our lab. The portable NIR system includes a tungsten halogen lamp, a specialized reflectance fiber optic probe and a photo diode array type InGaAs detector; which was developed by a microchip technology based on the lithography. Reflectance NIR spectra of different parts of human body (finger tip, earlobe, and inner lip) were recorded by using a fiber optic probe. The spectra were collected over the spectral range 1100 ∼ 1740 nm. Partial least squares regression (PLSR) was applied for the calibration and validation for the determination of blood glucose. The calibration model from earlobe spectra presented better results, showing good correlation with a glucose oxidase method which is a mostly used standard method. This model predicted the glucose concentration for validation set with a SEP of 33 mg/dL. This study indicated the feasibility for non-invasive monitoring of blood glucose by a portable near infrared system.