• Title/Summary/Keyword: Infrared diode

Search Result 123, Processing Time 0.026 seconds

Improvement of self-mixing semiconductor laser range finder and its application to range-image recognition of slowly moving object

  • Suzuki, Takashi;Shinohara, Shigenobu;Yoshida, Hirofumi;Ikeda, Hiroaki;Saitoh, Yasuhiro;Nishide, Ken-Ichi;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.388-393
    • /
    • 1992
  • An infrared range finder using a self-mixing laser diode (SM-LD), which has been proposed and developed by the Authors, can measure not only a range of a moving target but its velocity simultaneously. In this paper, described is that the precise mode-hop pulse train can be obtained by employing a new signal processing circuit even when the backscattered light returning into the SM-LD is much more weaker. As a result, the distance to a tilted square sheet made from aluminium or white paper, which is placed 10 cm through 60 cm from the SM-LD, is measured with accuracy of a few percent even when the tilting angle is less than 75 degrees or 85 degrees, respectively. And in this paper, described is the range-image recognition of a plane object under the condition of standstill. The output laser beam is scanned by scanning two plane mirrors-equipped with each stepping motor. And we succeeded in the acquisition of the range-image of a plane object in a few tens of seconds. Furthermore, described is a feasibility study about the range-image recognition of a slowly moving plane object.

  • PDF

Thermal Properties of 0.9CaMgSi2O6-0.1MgSiO3 Glass-Ceramics

  • Jeon, Chang-Jun;Sun, Gui-Nam;Lee, Jong-Kyu;Ju, Han-Sae;Kim, Eung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.111-117
    • /
    • 2012
  • Dependencies of thermal properties on the crystallization behavior of $0.9CaMgSi_2O_6-0.1MgSiO_3$ glass-ceramics were investigated as a function of heat-treatment temperature from $750^{\circ}C$ to $950^{\circ}C$. The crystallization behavior of the specimens depended on the heat-treatment temperature, which could be evaluated by differential thermal analysis (DTA), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) analysis by the Rietveld-reference intensity ratio (RIR) combined procedure. With an increase of the heat-treatment temperature, the thermal conductivity and thermal diffusivity of the heat-treated specimens increased. These results could be attributed to the increase of crystallization with heat-treatment temperature. However, the specific heat capacity of the heat-treated specimens was not affected by the heat-treatment temperature. The thermal conductivities measured from $25^{\circ}C$ to $100^{\circ}C$ were also discussed for application to lighting-emitting diode (LED) packages and substrate materials.

Electric Power Charging of Silicon Solar Cells using a Laser (레이저 조사에 따른 실리콘 솔라셀의 출력 특성)

  • Lee, Hu-Seung;Bae, Han-Sung;Kim, Seongbeom;Joo, Yun-Jae;Kim, Jung-Oh;Noh, Ji-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.362-367
    • /
    • 2016
  • Recently, wireless charging systems have expanded their applications from household electrical appliances to outdoor activity devices. In wireless charging systems, solar cells have versatile advantages, such as abundant raw materials within the earth, reasonable prices of products, and highest power conversion efficiency. In this study, the photovoltaic effect between a silicon solar cell and a photon of infrared wavelength was simulated using a Shockley diode equation. A solar cell power charging system was then set up to: 1) clarify mechanisms of the charging interaction based on the photovoltaic effect with a laser source, and 2) verify interdependency of the parameters: laser settings and geometrical position between a solar cell and the laser. As was observed, the solar cell generates more power when the photon was irradiated uniformly, intensively, and vertically on the surface of the solar cell.

Femtosecond laser pattering of ITO film on flexible substrate (펨토초 레이저를 이용한 플렉시블 ITO 패터닝 연구)

  • Sohn, Ik-Bu;Kim, Young-Seop;Noh, Young-Chul
    • Laser Solutions
    • /
    • v.13 no.1
    • /
    • pp.11-15
    • /
    • 2010
  • Indium tin oxide (ITO) provides high electrical conductivity and transparency in the visible and near IR (infrared) wavelengths. Thus, it is widely used as a transparent electrode for the fabrication of liquid crystal displays (LCDs) and organic light emitting diode displays (OLRDs), photovoltaic devices, and other optical applications. Lasers have been used for removing coating on polymer substrate for flexible display and electronic industry. In selective removal of ITO layer, laser wavelength, pulse energy, scan speed, and the repetition rate of pulses determine conditions, which are efficient for removal of ITO coating without affecting properties of the polymer substrate. ITO coating removal with a laser is more environmentally friendly than other conventional etching methods. In this paper, pattering of ITO film from polymer substrates is described. The Yb:KGW femtosecond laser processing system with a pulse duration of 250fs, a wavelength of 1030nm and a repetition rate of 100kHz was used for removing ITO coating in air. We can remove the ITO coating using a scanner system with various pulse energies and scan speeds. We observed that the amount of debris is minimal through an optical and a confocal microscope, and femtosecond laser pulses with 1030nm wavelength are effective to remove ITO coating without the polymer substrate ablation.

  • PDF

Development of Optical Pickup for ElectroAcoustic Guitar (일렉트로어쿠스틱 기타용 광 픽업의 개발)

  • Shin, Bong-Hi;Park, Young-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.417-422
    • /
    • 2014
  • A guitar pickup is a transducer that converts string vibration to an electrical signal. The magnetic and piezo pickups are the most commonly used for the respective electric and electroacoustic guitars. The magnetic pickups are prone to magnetic interference between the steel strings and permanent magnets, while the piezo ones are not free from signal inference between the strings. Thus, this paper presents the development of an optical pickup for the electroacoustic guitar. The proposed optical pickup has the top-to-bottom structure. It uses two of Infrared (IR) Light Emitting Diode (LED) and one photodetector. The developed optical pickup is subjected to the evaluation with commonly used piezoelectric pickup. It becomes obvious that SNR with the optical pickup is increased by 45 percent in average, compared with the piezoelectric pickup. It can be concluded that the developed optical pickup has a potential to be applied to the acoustic guitar.

Preamplier design for IR receiver IC (적외선 수신모듈IC용 전치증폭기의 설계)

  • Hong, Young-Uk;Ryu, Seung-Tak;Choi, Bae-Gun;Kim, Sang-Kyung;Baik, Sung-Ho;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3124-3126
    • /
    • 2000
  • The application of IR(Infrared) communication is very wide and IR receiver has become a standard of home entertainment. A preamplifier with single 5V supply was designed for IR receiver IC. To operate at long distance, receiver IC should have high gain and low noise characteristic. To provide constant output signal magnitude, independent of transciever distance, gain limiting stage is needed. And to cut-off DC noise component effectively, large resistance and capacitance are required. Transimpedance type preamplifier, and diode limiting amplifier, and current limiting amplifier were designed. It is another function of current limiting amplifier that transforms single input signal to differential output signal. Using AMS BiCMOS model, both BJT version and MOS version was designed. Total power consumption is O.lmW, and IC size is $0.3mm^2$

  • PDF

Design of LED Lighting System using Bluetooth Wireless Communcation (Bluetooth 무선 통신 기능을 이용한 LED 조명시스템 설계)

  • Kim, Hye Myeong;Yang, Woo Seok;Cho, Young Seek;Park, Dae Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.1-7
    • /
    • 2015
  • The Light Emitting Diode(LED) lighting control system proposed in this thesis is made up of a sensor module, a microcontroller, Bluetooth wireless communication, LED Driver, and LED downlight. The sensor module, comprised of an infrared sensor, an illumination sensor, and a temperature sensor, was designed to one Printed Circuit board(PCB). The system is able to identify the environment information collected by the sensor, and make it possible to control lighting automatically and manually through sensors. In addition, depending on users' conditions, a color temperature can be controlled. CS-1000, a spectroradiometer, was employed to measure the changing values of a color temperature in 8 steps. According to a test, it was found that it was possible to change a color temperature from 3187K of Warm White LED to 5598K of Cool White LED. The Bluetooth based wireless communication technique makes it possible to control more lighting devices than other wireless communication techniques does.

Study on Memristive Characteristics in Electronic Devices Based on Vanadium Dioxide Thin Films Using 966nm Laser Pulses (966nm 레이저 펄스를 이용한 바나듐 이산화물 박막 기반 전자 소자에서의 멤리스터 특성에 관한 연구)

  • Kim, Jihoon;Lee, Yong Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.59-65
    • /
    • 2015
  • By harnessing the thermal hysteresis behavior of vanadium dioxide($VO_2$), we demonstrated multi-resistance states in a two-terminal electronic device based on a $VO_2$ thin film by using a 966nm infrared laser diode as an excitation light source for resistance modulation. Before stimulating the device using 966nm laser pulses, the thermal hysteresis behavior of the device resistance was measured by using a temperature chamber. After that, the $VO_2$ device was thermally biased at ${\sim}71.6^{\circ}C$ so that its temperature fell into the thermal hysteresis region of the device resistance. Six multi-states of the device resistance could be obtained in the fabricated $VO_2$ device by five successive laser pulses with equal 10ms duration and increasing power. Each resistance states were maintained while the temperature bias was applied. And, the resistance fluctuation level was within 2.2% of the stabilized resistance and decreased down to less than 0.9% of the stabilized resistance 5s after the illumination.

Characteristics of Surface Hardening by Laser Power Control in Real Time of Spheroidal Graphite Cast Iron (실시간 출력 제어를 통한 구상흑연 주철의 레이저 표면경화 특성)

  • Kim, Jongdo;Song, Mookeun
    • Laser Solutions
    • /
    • v.18 no.2
    • /
    • pp.1-4
    • /
    • 2015
  • This study is related to the surface hardening treatment to spheroidal graphite cast iron for die by using high power diode laser. Laser device used in this experiment is capable of real-time laser power control. This is because the infrared temperature sensor (two color pyrometer) attached to the optical system measures the surface temperature of specimen and adjusts the laser power in real time. The surface treatment was carried out with the change of heat treatment temperature at the beam travel speed 3 mm/sec. Hardened width and depth was measured and hardened zone was analyzed by micro vickers hardness test in order to research the optimum condition of heat treatment. The changes in microstructure of the hardened zone also was examined. As a result of hardness measurement and observations on microstructure of hardened zone, hardness increased over three times as compared with base metal because the martensite was formed on the matrix structure.

Low Cost Omnidirectional 2D Distance Sensor for Indoor Floor Mapping Applications

  • Kim, Joon Ha;Lee, Jun Ho
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.298-305
    • /
    • 2021
  • Modern distance sensing methods employ various measurement principles, including triangulation, time-of-flight, confocal, interferometric and frequency comb. Among them, the triangulation method, with a laser light source and an image sensor, is widely used in low-cost applications. We developed an omnidirectional two-dimensional (2D) distance sensor based on the triangulation principle for indoor floor mapping applications. The sensor has a range of 150-1500 mm with a relative resolution better than 4% over the range and 1% at 1 meter distance. It rotationally scans a compact one-dimensional (1D) distance sensor, composed of a near infrared (NIR) laser diode, a folding mirror, an imaging lens, and an image detector. We designed the sensor layout and configuration to satisfy the required measurement range and resolution, selecting easily available components in a special effort to reduce cost. We built a prototype and tested it with seven representative indoor wall specimens (white wallpaper, gray wallpaper, black wallpaper, furniture wood, black leather, brown leather, and white plastic) in a typical indoor illuminated condition, 200 lux, on a floor under ceiling mounted fluorescent lamps. We confirmed the proposed sensor provided reliable distance reading of all the specimens over the required measurement range (150-1500 mm) with a measurement resolution of 4% overall and 1% at 1 meter, regardless of illumination conditions.