• Title/Summary/Keyword: Infrared analysis

Search Result 2,238, Processing Time 0.032 seconds

AKARI OBSERVATIONS OF THE FLUCTUATIONS OF THE NEAR-INFRARED BACKGROUND II

  • Seo, H.J.;Lee, H.M.;Matsumoto, T.;Jeong, W.S.;Lee, M.G.;Pyo, J.
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.327-329
    • /
    • 2017
  • We report a spatial fluctuation analysis of the sky brightness in the near-infrared from observations towards the north ecliptic pole (NEP) by AKARI at 2.4 and $3.2{\mu}m$. As a follow up study of our previous work on the Monitor field of AKARI, we used NEP deep survey data, which covered a circular area of about 0.4 square degrees, in order to extend fluctuation analysis at angular scales up to 1000". After pre-processing, additional correction procedures were done to correct time varying components and instrumental effects such as MUXbleed. To remove resolved objects, we applied $2{\sigma}$ clipping and point spread function (PSF) subtraction. We finally obtained mosaicked images which can be used for the study of various diffuse emissions in the near-infrared sky and found that there are spatial structures in the mosaicked images using a power spectrum analysis.

Discrimination of geographical origin and cultivation years of Ginseng by near Infrared reflectance spectroscopy

  • Lin, Guo-Lin;Sohn, Mi-Ryeong;Cho, Rae-Kwnag;Hong, Jin-Hwan
    • Near Infrared Analysis
    • /
    • v.1 no.2
    • /
    • pp.41-44
    • /
    • 2000
  • The objectives of this study are to discriminate the geographical origin and cultivation years of ginseng based on the near-infrared(NIR) reflectance spectroscopic analysis. Korea and China ginseng samples were prepared for discrimination of geographical origin. 4, 5 and 6 years-old ginseng samples from Korea were prepared for discrimination of cultivation years. Used spectrometer were InfraAlyzer 500, InfraAlyzer 400 and Fiber optic. Sample type of ginseng was 3, whole ginseng radix, slide section and powder type. The accuracy was affected by sample types and instruments. The accuracy for discrimination geographical origin was 97% in calibration model using IA 500 and ginseng powder. For discrimination of cultivation years, the model with slide selection using IA500 were relative accurate. The accuracy was 96.7% for 4-year, 91.3% for 5-year and 89.3% for 6-year old ginseng. The study shows that NIR spectroscopic analysis can be used to discriminate the geographical origin and cultivation years of ginseng with acceptable accuracy.

Infrared Signature Analysis on Armored Vehicle Applied with Emissivity Controlled Structure (장갑 차량의 방사율 제어구조 적용에 따른 적외선 신호 분석)

  • Kim, Taeil;Kim, Taehwan;Bae, Ji-Yeul;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.179-184
    • /
    • 2017
  • Due to rapid development of infrared guided weapon, survivability of armored vehicle is severely threatened. Hence, reduction of susceptibility by lowering infrared signature level is essential to enhance survivability of the vehicle. For this purpose, numerical analysis is conducted to analyze time and spatial characteristics of infrared signature of the vehicle when surface emissivity changes in this study. The analysis shows that the emissivity which produces minimum contrast radiant intensity is significantly altered by time and detecting position. Based on the result, it is concluded that the controlled structures which have different emissivity should be adopted at different region of the vehicle to effectively decrease infrared signature level.

A Study on Real-Time Fault Monitoring Detection Method of Bearing Using the Infrared Thermography (적외선 열화상을 이용한 베어링의 실시간 고장 모니터링 검출기법에 관한 연구)

  • Kim, Ho-Jong;Hong, Dong-Pyo;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.330-335
    • /
    • 2013
  • Since real-time monitoring system like a fault early detection has been very important, infrared thermography technique as a new diagnosis method was proposed. This study is focused on the damage detection and temperature characteristic analysis of ball bearing using the non-destructive infrared thermography method. In this paper, for the reliability assessment, infrared experimental data were compared with the frequency data of the existing. As results, the temperature characteristics of ball bearing were analyzed under various loading conditions. Finally it was confirmed that the infrared technique was useful for real-time detection of the bearing damages.

IR Susceptibility of Supersonic Aircraft according to Omni-directional Detection Angle (초음속 항공기 전방위 탐지각도에 따른 적외선 피격성 분석)

  • Nam, Juyeong;Chang, Injoong;Park, Kyungsu;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.638-644
    • /
    • 2021
  • Infrared guided weapons act as threats that greatly degrade the survivability of combat aircraft. Infrared weapons detect and track the target aircraft by sensing the infrared signature radiated from the aircraft fuselage. Therefore, in this study, we analyzed the infrared signature and susceptibility of supersonic aircraft according to omni-directional detection angle. Through the numerical analysis, we derived the surface temperature distribution of fuselage and omni-directional infrared signature. Then, we calculated the detection range according to detection angle in consideration of IR sensor's parameters. Using in-house code, the lethal range was calculated by considering the relative velocity between aircraft and IR missile. As a result, the elevational susceptibility is larger than the azimuthal susceptibility, and it means that the aircraft can be attacked in wider area at the elevational situation.

Preparation and Characterization of Low Infrared Emissivity Bicomponent Fibers with Radar Absorbing Property (레이더 흡수특성이 있는 저적외선 방출 복합섬유의 제조 및 특성 연구)

  • Yu Bin;Qi Lu
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.124-128
    • /
    • 2006
  • Heavy weight of the camouflage materials was always the main problem. To solve it, the low infrared emissivity fibers with the radar absorbing property (LIFR) were prepared. The low infrared emissivity fibers (LIF) were firstly melt-spun by co-extrusion of polypropylene (PP) and PP/various fillers master-batches using general conjugate spinning. The infrared emissivity of LW with AA and ZnO was decreased respectively compared with that of pure polypropylene fibers. The infrared emissivity of LIF with 15 wt% Al and 2 wt% ZnO in the sheath-part can reach 0.58. To improve LIF radar absorbing property, LIFR was prepared by filling the 50 wt% ferrite and bronze in the core-part of LIF. The radar absorbing efficacy of LIFR was good and the infrared emissivity was low. For the characterization, fiber electron intensity instrument and differential scanning calorimetry (DSC) were used for the analysis of mechanical properties, thermal and crystallization behavior of the spun-fibers. Scanning electron microscopy (SEM) was carried out to observe the particle distribution of the bicomponent fibers.

Analysis on Infrared Stealth Performance with Emissivity Controlled Aircraft Surface Structure at Various Background (항공기 적외선 스텔스 기술 적용을 위한 다양한 배경조건에서의 방사율 제어구조 성능 분석)

  • Bae, Munjang;Kim, Taehwan;Kim, Taeil;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.455-461
    • /
    • 2016
  • Survivability of an aircraft has been greatly threatened by the development of a weapon system using infrared. Therefore, the infrared stealth technology is a very important technique to improve the survivability of an aircraft. In this study, the infrared signal of an aircraft was analyzed which corresponding to the aircraft surface temperature and environmental conditions with various surface conditions(especially emissivity changed). Based on the analyzed infrared signal, the optimized surface emissivity was suggested to reduce the average contrast radiance and contrast radiant intensity(CRI). In addition, we confirmed that the infrared contrast radiant intensity between the aircraft and the background can be minimized through an appropriately controlled surface emissivity of the aircraft at specific background.

Infrared Signature Analysis of the Aircraft Exhaust Plume with Radiation Database (복사 데이터베이스를 활용한 항공기 배기 플룸 IR 신호 해석)

  • Cho, Pyung Ki;Gu, Bonchan;Baek, Seung Wook;Kim, Won Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.568-575
    • /
    • 2016
  • For the combat survivability, an infrared signature emitted from aircraft is needed to be predicted and analyzed. In this study, we studied the infrared signature from the exhaust plume from the viewpoint of Infrared(IR) detector. The Line-By-Line method using the radiation database is used for radiative property, and radiative intensity analysis is conducted along 1-D line of sight based on the radiative property. The numerical thermo-fluid field for the plume is conducted by ANSYS FLUENT, while setting the lines of sight having the different detection angle on the thermo-fluid field. We found the high IR signature on the line of sight passing through the locally high temperature region of the plume inside, and the strongest signature from the line of sight toward the nozzle surface. Based on this, it confirms the influence of the surface radiative emission on the infrared signature.

Infrared Detector Using Pyroelectrics

  • Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.147-150
    • /
    • 2006
  • The thin film of PbTiO3 is fabricated at substrate temperature of 100-150$^{\circ}C$. The infrared spectrum of the ferroelectric thin film is measured as temperature of thermal treatment, 400 - 550$^{\circ}C$. According to infrared spectrum analysis, there are absorption bands at a nearby wave number of 1000 $\sim$ 400 cm-l and the thin film treated by temperature of 550$^{\circ}C$ has absorption bands of wave number 500 cm-l similar to infrared response property of PbTiO3 powder. The pyroelectric infrared detector is fabricated after deposition of Pt and PbTiO3 thin film on Si wafer by sputtering machine. The measured remnant polarization are 11.5-12.5$\muC/cm2$, breakdown electric field Ec is 100-120KV/cm, and voltage responsivity and detectivity is -280V/W, -108cm Hz/W.

A Study on the Infrared Radiation Properties of Anodized Aluminum (양극산화된 알루미늄의 적외선 복사특성 연구)

  • 강병철;최정진;김기호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.149-157
    • /
    • 2002
  • Spectral emissivity depends on the surface conditions of the materials. The mechanisms that affect the spectral emissivity in anodic oxide films on aluminum were investigated. The aluminum specimens were anodized in a sulfuric acid solution and the thickness of the resulting oxide film formed changed with the anodizing time. FT-IR spectrum analysis identified the anodic oxide film as boehmite ($Al_2$$O_3$.$H_2$O). Both the infrared emisivity and reflectivity of the anodized aluminum were affected by the structure of the anodic oxide film because Al-OH and Al-O-Al have a pronounced absorption band in the infrared region of the spectrum. The presence of an anodic oxide film on aluminum caused a rapid drop in the infrared reflectivity. An aluminum surface in the clean state had an emissivity of approximately 0.2. However, the infrared emissivity rapidly increased to 0.91 as the thickness of the anodic oxide film increased.