• Title/Summary/Keyword: Infrared Thermal image analysis

Search Result 95, Processing Time 0.019 seconds

Manufactures of dental casting Co-Cr-Mo based alloys in addition to Sn, Cu and analysis of infrared thermal image for melting process of its alloys (Sn 및 Cu를 첨가한 치과 주조용 Co-Cr-Mo계 합금제조 및 용해과정 분석)

  • Kang, Hoo-Won;Park, Young-Sik;Hwang, In;Lee, Chang-Ho;Heo, Yong;Won, Yong-Gwan
    • Journal of Technologic Dentistry
    • /
    • v.36 no.3
    • /
    • pp.141-147
    • /
    • 2014
  • Purpose: Dental casting #Gr I (Co-25Cr-5Mo-3Sn-1Mn-1Si), #Gr II (Co-25Cr-5Mo-5Cu-1Mn -1Si) and #Gr III (Co-25Cr-5Mo-3Sn-5Cu-1Mn-1Si) master alloys of granule type were manufactured the same as manufacturing processes for dental casting Ni-Cr and Co-Cr-Mo based alloys of ingot type. These alloys were analyzed melting processes with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer. Methods: These alloys were manufactured such as; alloy design, the first master alloy manufatured using vacuum arc casting machine, melting metal setting in crucible, melting in VIM, pouring in the mold of bar type, cutting the gate and runner bar and polishing. These alloys were put about 30g/charge in the ceramic crucible of high frequency induction centrifugal casting machine and heat, Infrared thermal image analyzer indicated alloys in the crucible were set and operated. Results: The melting temperatures of these alloys measuring infrared thermal image analyzer were decreased in comparison with remanium$^{(R)}$ GM 800+, vera PDI$^{TM}$, Biosil$^{(R)}$ f, WISIL$^{(R)}$ M type V, Ticonium 2000 alloys of ingot type and vera PDS$^{TM}$(Aabadent, USA), Regalloy alloys of shot type. Conclusion: Co-Cr-Mo based alloy in addition to Sn(#Gr I alloy) were decreased the melting temperature with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer.

A Study on Application of Remote Sensing for Thermal Plume Analysis (온배수 확산분석을 위한 Remote Sensing 활용에 관한 연구)

  • Yeu, Bock-Mo;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.2 s.2
    • /
    • pp.185-194
    • /
    • 1993
  • In this research, the image obtained by TM platformed in the LANDSAT-5 and the terrestrial infrared image obtained by the Thermo Tracer were employed in order to search the distribution of industrial thermal plume discharged into seas. Sea surface temperature distributions were deduced based on the infrared band 6 in the TM image of the LANDSAT by employing the transformal formula provided by the CSFC of the NASA and post-calibration values. The temperature distributions were also obtained with the processing mode of the TH1100 series from the terrestrial thermal image or the Thermo tracer. According to the results of the image analyses with this methods, it was found that sea surface temperatures in shallow coastal area largely affected by the temperatures of the freshwater and inland and that the range and the area of distribution of the thermal plume can be visualized quantitatively. Furthermore, when the terrestrial thermal infrared scanner is used, the more details of the distribution range can be obtained, and the image results are comparable to those obtained from the LNADSTA.

  • PDF

Evaluation for the Heating Performance of the Heated Clothing on Market (시판 발열의복의 발열성능 평가)

  • Lee, Hyun-Young;Jeong, Yeon-Hee
    • Fashion & Textile Research Journal
    • /
    • v.12 no.6
    • /
    • pp.843-850
    • /
    • 2010
  • To evaluate the heating performance of commercial heated vests, we investigated the thermal images and the temperature between body and vest for three heated vests. We captured infrared thermography by FT-IR Spectrometer to analyzed the heating temperature of the heating elements taken from the vests, and the maximum heating temperature of the vests was compared with thermal image in the room temperature($18^{\circ}C$). In outdoor experiment($-4.7^{\circ}C$), we measured the inner temperature as well as the thermal image of heated vests. Four healthy men participated in this experiment, and the ANOVA and Duncan test was performed for statistical analysis. As the results, the heating temperature range of the heated vests used in this experiment was $32{\sim}42^{\circ}C$, much lower than the displayed temperature range in their specifications, so the exact specification for heating performance of heated clothing was required. In comparisons of the heating performance among the heated vests, we found out that the insulation of clothing is very important to design the heated clothing, because the inner temperature of the vest had good insulation by itself was higher than that of the vest shown higher temperature over $7^{\circ}$ than another vests at the heating temperature.

Correlation Analysis between HIVD of L-spine MRI and Digital Infrared Thermal Image (DITI) on the Patients of LBP Who Visit Korean Medicine Hospital (한방병원에 요통, 하지방사통으로 내원한 환자 236명에서 MRI상 추간판 탈출증과 적외선 체열 검사(DITI)와의 연관성 분석)

  • Kim, Gil-Hwan;Kwon, Ok-Jun;Joo, Young-Kuk;Song, Seung-Bae;Kim, Doo-Ri;Choi, Young-Jun;Shin, Soo-Ji
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.27 no.3
    • /
    • pp.107-115
    • /
    • 2017
  • Objectives This study is planned to classify correlation between HIVD of L-spine MRI and Digital Infrared Thermal Image (DITI). Methods We measured the temperature of both leg whose 120 men and 116 women patients with lumbar pain in Bucheon Jaseng Korean Medicine Hospital. And We use Magnetic Resonance Imaging (MRI) for classifying the patients who has lumbar intervertebral disc or not. Results 1) There was no statistical relation between difference of both leg's temperature and gender (p>0.05). 2) There was meaningful statistical relation between difference of both leg's temperature and age (p<0.05). 3) There was meaningful statistical relation between direction of HIVD of L-spine and direction of temperature reduction. 4) There was meaningful statistical relation between the severity of HIVD of L5/S1 and degree of temperature reduction. But there was no statistical relation between the severity of HIVD of L3/4, L4/5 and degree of temperature reduction. Conclusions We can use Digital Infrared thermal image (DITI) on low back pain patients for diagnosis. But we should not use DITI alone. DITI has limit in diagnosis.

Diagnosis of Cast Resin Transformer Using Analysis of Surface Temperature Distribution (표면온도분포 분석을 이용한 몰드 변압기 진단)

  • Lim, Yong-Bae;Chun, Jong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.444-447
    • /
    • 2003
  • All objects with some temperature above absolute zero radiate in the infrared. The intensity of the infrared radiated from a object defends on the condition and temperature on the surface of the one. The present, these techniques are frequently adopted into diagnosis for electricity equipments. Simply, however, the applied techniques are passive thermal testing for the detection of loosened terminals and overcurrent. In this paper, a infrared thermal imager was applied to high voltage windings of cast resin transformers, and the accumulated value of the result temperatures was used for evaluating remained lifetime of them. At each aging level, dielectric loss tangent test was carried out. The results offered capabilities for deciding the condition of the transformers suffering difficulties to diagnose.

  • PDF

A Study on the Improvement of Image Quality for a Thermal Imaging System with focal Plane Array Typed Sensor (초점면 배열 방식 열상 카메라 시스템의 화질 개선 연구)

  • 박세화
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.27-31
    • /
    • 2000
  • Thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main Part of the system is thermal camera in which a focal plane array typed sensor is introduced The sensor detects mid-range infrared spectrum or target objects and then it output generic video signal which should be processed to form a thermal image frame. A digital signal processor(DSP) in the system inputs analog to digital converted data. performs algorithms to improve the thermal images and then outputs the corrected frame data to frame buffers for NTSC encoding and for digital outputs.. To enhance the quality of the thermal images, two point correction method is applied. Figures indicate that the corrected thermal images are much improved.

  • PDF

Analysis of Passive Cooling Effect of the Tree by Field Observations in the Summer (하절기 단일 수목의 열 환경 관측을 통한 서열완화 효과 해석)

  • Choi, Dong-Ho;Lee, By-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.109-118
    • /
    • 2006
  • The tree is regarded as an sustainable architectural outdoor design element which reduce urban heat island effect by its solar shading and evapotranspiration. This study carried out field observations of measuring thermal environment of selected tree and its ambience to determine passive cooling effects. Results from the field observations are as below; Tree-shading effect to the thermal environment can not be properly evaluated by merely measuring air temperature differences between tree-shaded space and unshaded space for the maximum temperature difference is less than $1.5^{\circ}C$. The differences of longwave radiation and shortwave radiation between tree-shaded space and unshaded space are measured. Shortwave radiation is considered as a main thermal comfort determining factor for the difference of the shortwave radiation is much bigger than that of longwave radiation. By thermal infrared image analysis, the surface temperature of the tree under strong solar radiation is measured same as ambient air temperature. By which the evapotranspiration is considered to retard tree surface temperature raising effectively.

Defect Detection of Wall Thinned Straight Pipe using Shearography and Lock-in Infrared Thermography (전단간섭계와 적외선열화상을 이용한 감육 직관의 결함검출)

  • Kim, Kyeong-Suk;Jung, Hyun-Chul;Chang, Ho-Seob;Kim, Ha-Sig;La, Sung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.55-61
    • /
    • 2009
  • The wall thinning defect of nuclear power pipe is mainly occurred by the affect of the flow accelerated corrosion (FAC) of fluid. This type of defect becomes the cause of damage or destruction of in carbon steel pipes. Therefore, it is very important to measure defect which is existed not only on the welding part but also on the whole field of pipe. This study use dual-beam Shearography, which can measure the out-of-plane deformation and the in-plane deformation by using another illuminated laser beam and simple image processing technique. And this study proposes Infrared thermography, which is a two-dimensional non-contact nondestructive evaluation that can detect internal defects from the thermal distribution by the inspection of infrared light radiated from the object surface. In this paper, defect of nuclear power pipe were, measured using dual-beam shearography and infrared thermography, quantitatively evaluated by the analysis of phase map and thermal image pattern.

Analysis of Laser-beam Thermal Effects In an Infrared Camera and Laser Common-path Optical System (적외선 카메라-레이저 공통광학계의 레이저빔 열 영향성 분석)

  • Kim, Sung-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.153-157
    • /
    • 2017
  • An infrared camera and laser common-path optical system is applied to DIRCM (directional infrared countermeasures), to increase boresighting accuracy and decrease weight. Thermal effects of a laser beam in a common-path optical system are analyzed and evaluated, to predict any degradation in image quality. A laser beam with high energy density is absorbed by and heats the optical components, and then the surface temperature of the optical components increases. The heated optical components of the common-path optical system decrease system transmittance, which can degrade image quality. For analysis, the assumed simulation condition is that the laser is incident for 10 seconds on the mirror (aluminum, silica glass, silicon) and lens (sapphire, zinc selenide, silicon, germanium) materials, and the surface temperature distribution of each material is calculated. The wavelength of the laser beam is $4{\mu}m$ and its output power is 3 W. According to the results of the calculations, the surface temperature of silica glass for the mirror material and sapphire for the lens material is higher than for other materials; the main reason for the temperature increase is the absorption coefficient and thermal conductivity of the material. Consequently, materials for the optical components with high thermal conductivity and low absorption coefficient can reduce the image-quality degradation due to laser-beam thermal effects in an infrared camera and laser common-path optical system.

Vegetation Monitoring using Unmanned Aerial System based Visible, Near Infrared and Thermal Images (UAS 기반, 가시, 근적외 및 열적외 영상을 활용한 식생조사)

  • Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.71-91
    • /
    • 2018
  • In recent years, application of UAV(Unmanned Aerial Vehicle) to seed sowing and pest control has been actively carried out in the field of agriculture. In this study, UAS(Unmanned Aerial System) is constructed by combining image sensor of various wavelength band and SfM((Structure from Motion) based image analysis technique in UAV. Utilization of UAS based vegetation survey was investigated and the applicability of precision farming was examined. For this purposes, a UAS consisting of a combination of a VIS_RGB(Visible Red, Green, and Blue) image sensor, a modified BG_NIR(Blue Green_Near Infrared Red) image sensor, and a TIR(Thermal Infrared Red) sensor with a wide bandwidth of $7.5{\mu}m$ to $13.5{\mu}m$ was constructed for a low cost UAV. In addition, a total of ten vegetation indices were selected to investigate the chlorophyll, nitrogen and water contents of plants with visible, near infrared, and infrared wavelength's image sensors. The images of each wavelength band for the test area were analyzed and the correlation between the distribution of vegetation index and the vegetation index were compared with status of the previously surveyed vegetation and ground cover. The ability to perform vegetation state detection using images obtained by mounting multiple image sensors on low cost UAV was investigated. As the utility of UAS equipped with VIS_RGB, BG_NIR and TIR image sensors on the low cost UAV has proven to be more economical and efficient than previous vegetation survey methods that depend on satellites and aerial images, is expected to be used in areas such as precision agriculture, water and forest research.