• Title/Summary/Keyword: Infrared Signal

Search Result 341, Processing Time 0.032 seconds

Digital Bit Stream Wireless Communication System Using an Infrared Spatial Coupler for Audio/Video Signals (A/V용 적외선 송수신장치를 이용한 디지털 비트스트림 무선 통신 시스템)

  • 예창희;이광순;최덕규;송규익
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.309-312
    • /
    • 2001
  • In this paper, we proposed a system for bit stream wireless communication using audio/video infrared transceiver and implemented a circuit. The proposed transmitter system converted bit stream into analog signal format that is similar to NTSC. Then the analog signal can be transmitted by infrared spatial coupler for A/V signals. And the receiver system recover the bit stream by inverse process of transmitter.

  • PDF

Hybrid Linear Analysis Based on the Net Analyte Signal in Spectral Response with Orthogonal Signal Correction

  • Park, Kwang-Su;Jun, Chi-Hyuck
    • Near Infrared Analysis
    • /
    • v.1 no.2
    • /
    • pp.1-8
    • /
    • 2000
  • Using the net analyte signal, hybrid linear analysis was proposed to predict chemical concentration. In this paper, we select a sample from training set and apply orthogonal signal correction to obtain an improved pseudo unit spectrum for hybrid least analysis. using the mean spectrum of a calibration training set, we first show the calibration by hybrid least analysis is effective to the prediction of not only chemical concentrations but also physical property variables. Then, a pseudo unit spectrum from a training set is also tested with and without orthogonal signal correction. We use two data sets, one including five chemical concentrations and the other including ten physical property variables, to compare the performance of partial least squares and modified hybrid least analysis calibration methods. The results show that the hybrid least analysis with a selected training spectrum instead of well-measured pure spectrum still gives good performances, which is a little better than partial least squares.

Evaluation of the Usefulness of the Self-developed Kw-infrared Reflective Marker in Non-coplanar Treatment (비동일면 치료 시 자체 제작한 Kw-infrared Reflective Marker의 유용성 평가)

  • Kwon, Dong-Yeol;Ahn, Jong-Ho;Park, Young-Hwan;Song, Ki-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • Purpose: In radiotherapy that takes into account respiration using a RPM (Real time Position Management, Varian, USA) system, which can treat in consideration of the movement of tumor, infrared reflective markers supplied by manufacturers cannot obtain respiratory signal if the couch rotates at a certain angle or larger. In order to solve this problem, the author developed the 3D infrared reflective marker named 'Kw-marker' that can obtain respiratory signal at any angle, and evaluate its usefulness. Materials and Methods: In order to measure the stability of respiratory signal, we put the infrared reflective marker on the 3D moving phantom that can reproduce respiratory movement and acquired respiratory signal for 3 minutes under each of 3 conditions (A: $couch\;0^{\circ}$, a manufacturer's infrared reflective marker B: $couch\;0^{\circ}$, Kw-marker C: $couch\;90^{\circ}$, Kw-marker). By analyzing the respiratory signal using a breath analysis program (Labview Ver. 7.0), we obtained the peak value, valley value, standard deviation, variation value, and amplitude value. In order to examine the rotation error and moving range of the target, we placed a B.B phantom on the 3D moving phantom, and obtained images at a couch angle of $0^{\circ}$ and $90^{\circ}$ using OBI, and then acquired the X, Y and Z values (mm) of the ball bearing at the center of the B.B phantom. Results: According to the results of analyzing the respiratory signal, the standard deviation at the peak value was A: 0.002, B: 0.002 and C: 0.003, and the stability of respiration for amplitude was A: 0.15%, B: 0.14% and C:0.13%, showing that we could get respiratory signal stably by using the Kw-marker. When the couch rotated $couch\;90^{\circ}$, the mean rotation error of the ball bearing, namely, the target was X: -1.25 mm, Y: -0.45 mm and Z: +0.1 mm, which were within 1.3 mm on the average in all directions, and the difference in the moving range of the target was within 0.3 mm. Conclusion: When we obtained respiratory signal using the Kw-marker in non-coplanar treatment where the couch rotated, we could acquire respiratory signal stably and the Kw-marker was effective enough to substitute for the manufacturer's infrared reflective marker. When the rotation error and moving range of the target were measured, there was little difference, indicating that the displacement of the reflector movement in couch rotation is the cause of change in the scale and amplitude of respiratory signal. If the converted value of amplitude height according to couch angle is studied further and applied, it may be possible to perform non-coplanar phase-based gating treatment.

  • PDF

The Design of an Infrared Transcutaneous Control Unit for Totally Implantable Middle Ear System (완전 이식형 인공중이를 위한 체외 및 체내 제어시스템 구현)

  • 정의성;강호경;박일용;윤영호;김민규;송병섭;원철호;조진호
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.5
    • /
    • pp.71-78
    • /
    • 2004
  • An infrared remote control-type transcutaneous control device using a $\mu$-processor is design for the totally implantable middle ear system. An infrared light transmission model for the tissue of skin was introduced and then a radiant intensity and the required current of the infrared light emitting diode(IR LED) driving circuit at transmission part were calculated for the external control device. And the transmission part generates IR signal by the system's own data protocol which prevents interferences from other infrared remote controls of the household appliances. The control part of the implanted device was designed to analyze functions of the received infrared(IR) signal that indicate the power ON/OFF and volume UP/DOWN. After the system is implemented, a data transmission experiments using 4 mm thickness of porcine skin were carried out. From the experiment, it was verified that the infrared control signal was transmitted to receiving module of the implemented system without any error.

Exploring the Optimal Stealth Material Emissivity for Infrared Camouflage across Diverse Temperature Surface Backgrounds (다양한 온도의 지표 배경에서 적외선 위장을 위한 최적의 스텔스 물질 방사율 탐구)

  • Jina Lee;Jae Won Hahn;Dongjun Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.5
    • /
    • pp.228-234
    • /
    • 2024
  • Modern infrared-guided weapons detect and destroy targets by seeking and tracking the infrared radiation emitted by the target. By covering the target with a material that has low infrared emissivity, the infrared signal can be reduced to evade tracking. However, this method is effective only when the target is hotter than the background. Since the temperature of the background varies significantly between day and night, target signals with low emissivity at night can be captured by the optical systems of guided weapons due to signal contrast, as they are smaller than the background signals. In this study, the optimal emissivity for implementing infrared stealth for ground targets is calculated based on the temperature and emissivity of the background, as well as the temperature of the target. The size of the signal received by the optical systems of guided weapons, the contrast value of the image, and the lock-on range were calculated for target signals that vary depending on the emissivity of the target. The effectiveness of the optimal emissivity was demonstrated by thermal imaging computer simulations using COMSOL Multiphysics software.

Implementation of Infrared Thermal Image Processing System for Disaster Monitoring (재난 감시를 위한 적외선 열화상 처리 시스템의 구현)

  • Kim, Won-Ho;Kim, Dong-Keun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.9-12
    • /
    • 2010
  • This paper presents design and implementation of infrared thermal image processing system based on the digital media processor for disaster monitoring. The digital thermal image processing board is designed and implemented by using commercial chips such as DM642 processor and video encoder, video decoder. The implemented functions for disaster monitoring are to analyze temperature distribution of a monitoring infrared thermal image and to detect disaster situation such as fire. For the input of infrared thermal image processing system, an infrared camera of type of the $320\;{\times}\;240\;{\mu}$-bolometer is used. The required functions are confirmed with 10 frame/second of processing performance by testing of the prototype and Practicality of the system was verified.

Design and Analysis of Flame Signal Detection with the Combination of UV/IR Sensors (UV/IR센서 결합에 의한 불꽃 영상검출의 설계 및 분석)

  • Kang, Daeseok;Kim, Eunchong;Moon, Piljae;Sin, Wonho;Kang, Min-goo
    • Journal of Internet Computing and Services
    • /
    • v.14 no.2
    • /
    • pp.45-51
    • /
    • 2013
  • In this paper, the combination of ultraviolet and infrared sensors based design for flame signal detection algorithms was proposed with the application of light-wavelength from burning. And, the performance result of image detection was compared by an ultraviolet sensor, an infrared sensor, and the proposed dual-mode sensors(combination of ultraviolet and infrared sensors).

Implementation of a Thermal Imaging System with Focal Plane Array Typed Sensor (초점면 배열 방식의 열상카메라 시스템의 구현)

  • 박세화;원동혁;오세중;윤대섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.396-403
    • /
    • 2000
  • A thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main part of the system is a thermal camera in which a focal plane array typed sensor is introduced. The sensor detects the mid-range infrared spectrum of target objects and then it outputs a generic video signal which should be processed to form a frame thermal image. Here, a digital signal processor(DSP) is applied for the high speed processing of the sensor signals. The DSP controls analog-to-digital converter, performs correction algorithms and outputs the frame thermal data to frame buffers. With the frame buffers can be generated a NTSC signal and transferred the frame data to personal computer(PC) for the analysis and a monitoring of the thermal scenes. By performing the signal processing functions in the DSP the overall system achieves a simple configuration. Several experimental results indicate the performance of the overall system.

  • PDF

Technological Trend of Mid-infrared Optical Sensors (중적외선 광센서 기술동향)

  • Leem, Y.A.;Kwon, O.K.;Kim, K.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.41-49
    • /
    • 2018
  • Mid-infrared optical sensors have a number of compelling advantages for remote sensing and the simultaneous measurement of mixtures. However, they still have difficulties in accurate detection owing to signal interferences among a large number of molecular fingerprints in the mid-infrared band, which result in very slow commercialization. Higher sensitivity and higher selectivity are required to overcome this obstruction in measurement technology. In this paper, we review and analyze the trends of mid-infrared sensor technologies enhancing the sensitivity and selectivity.

Analysis of the error signals for infrared reticle seekers in multiple targets (다중 표적에 대한 적외선 레티클 탐색기의 오차 신호 분석)

  • 한성현;홍현기;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1438-1446
    • /
    • 1996
  • Infrared seekers using reticles with a single detector have been widely used due to small size and low cost. However, the analysis of the error signals and the performance in multiple targets are performed either simplistically or not at all. In this paper, we present detector signals and processing results using image and signal processing techniques, especially performance analysis in multiple targets. The simulation results are essential to make the advanced signal processing part of retical seekers which can deal with various engagement scenarios.

  • PDF