• Title/Summary/Keyword: Infrared MTF system

Search Result 20, Processing Time 0.024 seconds

Modulation Transfer Function System for a Mid-infrared Lens by Knife-edge Scanning Technique (칼날 주사방식을 이용한 중적외선 렌즈의 변조전달함수 측정 장치)

  • Song, Se-Yong;Jo, Jae-Heung;Hong, Sung-Mok;Lee, Hoi-Youn;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.16-22
    • /
    • 2011
  • We fabricate a measuring system to measure the modulation transfer function (MTF) of a mid-infrared imaging silicon lens by using the knife-edge scanning technique. In particular, we measure on-axial tangential MTF of the silicon lens with the focal length of 50 mm and F-number F/4 in the wavelength band of mid-infrared between $3\;{\mu}m$ and $5\;{\mu}m$. In order to obtain the infinite object, the off-axial parabolic reflector with the focal length of 2.545 m is utilized. In the comparison with measured MTF data and designed MTF values curve, we find that the tolerance of measured MTF data below the spatial frequency of 7 lp/mm is within 2%.

Measurement of the Modulation Transfer Function of Infrared Imaging System by Modified Slant Edge Method

  • Li, Hang;Yan, Changxiang;Shao, Jianbing
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.381-388
    • /
    • 2016
  • The performance of a staring infrared imaging system can be characterized based on estimating the modulation transfer function (MTF). The slant edge method is a widely used MTF estimation method, which can effectively solve the aliasing problem caused by the discrete undersampling of the infrared focal plane array. However, the traditional slant edge method has some limitations such as the low precision of the edge angle extraction and using the approximate function to fit the edge spread function (ESF), which affects the accuracy of the MTF estimation. In this paper, we propose a modified slant edge method, including an edge angle extraction method that can improve the precision of the edge angle extraction and an ESF fitting algorithm which is based on the transfer function model of the imaging system, to enhance the accuracy of the MTF estimation. This modified slant edge method presents higher estimation accuracy and better immunity to noise and edge angle than other traditional methods, which is demonstrated by the simulation and application experiments operated in our study.

Development of a MTF Measurement System for an Infrared Optical System (적외선 광학계용 MTF 측정장치 개발)

  • Son, Byoung-Ho;Lee, Hoi-Yoon;Song, Jae-Bong;Yang, Ho-Soon;Lee, Yun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.3
    • /
    • pp.162-167
    • /
    • 2015
  • In this paper, we developed a MTF (Modulation Transfer Function) measurement system using a knife-edge scanning method for infrared optics. It consists of an objective part to generate the target image, a collimator to make the beam parallel, and a detector to analyze the image. We used a tungsten filament as the light source and MCT (Mercury Cadmium Telluride) to detect the mid-infrared(wavelength $3-5{\mu}m$) image. We measured the MTF of a standard lens (f=5, material ZnSe) to test this instrument and compared the result to the theoretical value calculated using the ZEMAX commercial software. It was found that the difference was within ${\pm}0.035$ at the cut-off frequency (50 1/mm). Also, we calculated the A-type measurement uncertainty to check the reliability of the measurement. The result showed only 0.002 at 20 1/mm in spatial frequency, which means very little variation in the MTF measurement under the same conditions.

Design of Imaging Optical System with 24mm Focal length for MWIR (MWIR용 24mm 초점거리를 가지는 결상광학계의 설계)

  • Lee, Sang-Kil;Lee, Dong-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.203-207
    • /
    • 2018
  • This paper deals with the design and development of a lens system capable of imaging an infrared image of $3{\sim}5{\mu}m$ wavelength bands with a focal length of 24mm and good atmospheric transmission characteristics. The design used CodeV, a commercial design program, and the optimization is carried out with weighting to eliminate chromatic aberration, spherical aberration and distortion. The designed lens system consists of two lenses consisting of Si and Ge. Each lens has an aspherical surface on one side. And this optical system has the resolution of the characteristics that the MTF value is 0.40 at the line width of 29lp/mm and the MTF value is 0.25 at the line width of 20lp/mm. This optical system is considered to have the capability to be applied to the thermal imaging camera for MWIR using the $206{\times}156$ array infrared detector of $25{\mu}m$ pixels and the $320{\times}240$ array infrared detector of $17{\mu}m$ pixels.

Design and Performance Verification of a LWIR Zoom Camera for Drones

  • Kwang-Woo Park;Jonghwa Choi;Jian Kang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.354-361
    • /
    • 2023
  • We present the optical design and experimental verification of resolving performance of a 3× long wavelength infrared (LWIR) zoom camera for drones. The effective focal length of the system varies from 24.5 mm at the wide angle position to 75.1 mm at the telephoto position. The design specifications of the system were derived from ground resolved distance (GRD) to recognize 3 m × 6 m target at a distance of 1 km, at the telephoto position. To satisfy the system requirement, the aperture (f-number) of the system is taken as F/1.6 and the final modulation transfer function (MTF) should be higher than 0.1 (10%). The measured MTF in the laboratory was 0.127 (12.7%), exceeds the system requirement. Outdoor targets were used to verify the comprehensive performance of the system. The system resolved 4-bar targets corresponding to the spatial resolution at the distance of 1 km, 1.4 km and 2 km.

Design and Fabrication of Low Cost Infrared Optical System Using Precision Glass Molding Lens Made by Chalcogenide Glass (칼코게나이드 유리 소재의 PGM 가공 렌즈를 사용한 저가의 적외선 광학계 설계와 제작)

  • Oh, Seung Eun;Lee, Sun Kyu;Choi, Joong Kyu;Song, Kook Hyun;Baek, Jong Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.154-158
    • /
    • 2012
  • In this paper, for low cost infrared optical equipment, we design and fabricate an infrared optical system for an uncooled detector using PGM(Precision Glass Molding) lenses. The designed infrared optical system has a good athermalization, and the material of all of its lenses is a chalcogenide glass suitable for the PGM method. In addition, we also fabricate the same infrared optical system using SPDT(Single Point Diamond Turning) lenses in order to measure the optical performance of PGM lenses. We measure the MTF(Modulation Transfer Function) of the two infrared optical systems which use the PGM lenses and the SPDT lenses. And then we compare and analyze the images of them both. As a result, we find that they have only a very small difference in optical performance. If the use of PGM lenses increases, we expect to reduce the cost of infrared optical equipment.

Wide-angle optical design using high-resolution uncooled thermal detector

  • Lee, Jonghoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.31-37
    • /
    • 2017
  • In this paper, we propose efficient design and construction of an infrared wide angle optical system with low distortion utilizing a high resolution detector for automobile application. The operational convenience and the recognition ability have been improved significantly by applying the high resolution uncooled thermal detector with wide angle optical design. The active ahtermalization mechanism is implemented so that the adjustment of the optical component of the system is to be made automatically according to the temperature change by motorized control. The modulation transfer function (MTF) is about 50% at the Nyquist frequency close the diffraction limit. The distortion is less than 5% at the edge field. As a result, a high-resolution uncooled thermal optical system with wide field of view (FOV) is assembled, aligned and its performance is tested successfully.

Design and Analysis of an Optical System for an Uncooled Thermal-imaging Camera Using a Hybrid Lens (Hybrid 렌즈를 이용한 비냉각 열상장비 광학계 설계 및 분석)

  • Ok, Chang-Min;Kong, Hyun-Bae;Park, Hyun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.241-249
    • /
    • 2017
  • This paper presents the design and evaluation of the optical system for an uncooled thermal-imaging camera. The operating wavelength range of this system is from $7.7{\mu}m$ to $12.8{\mu}m$. Through optimization, we have obtained a LWIR (Long Wave Infrared) optical system with a focal length of 5.44 mm, which consists of four aspheric surfaces and two diffractive surfaces. The f-number of the optical system is F/1.2, and its field of view is $90^{\circ}{\times}67.5^{\circ}$. The hybrid lens was used to balance the higher-order aberrations, and its diffraction properties were evaluated by scalar diffraction theory. We calculated the polychromatic integrated diffraction efficiency, and the MTF drop generated by background noise. We have evaluated the thermal compensation of a LWIR fixed optical system, which is optically passively athermalized to maintain MTF performance in the focal depth. In conclusion, these design results are useful for an uncooled thermal-imaging camera.

Design of Variable F-number and Triple Magnification Infrared Optical System (가변 F/수 삼중 배율 적외선 광학계 설계 연구)

  • Jeong, Yumee
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.4
    • /
    • pp.153-162
    • /
    • 2021
  • In this article, the design of a variable F-number and triple magnification infrared optical system is described. That is a two-in-one optical system that combines an infrared search and track (IRST) system and an electro-optical tracking system (EOTS), where an afocal optical system is added to the IRST optical system designed already. The performance target is determined by analyzing system performance, and then the specification in the optical system design is calculated. This optical system contains a warm stop making it possible that one optics has two different F/# by cutting the size of aperture, and that is designed to suit this optics. The system satisfies the requirement such as a modulation transfer function (MTF). For operational assessment, the movement of the focusing lens group is analyzed over the change of temperature and target distance. By using this optical system, it is possible to develop equipment having two functions, infrared searching and electro-optical tracking.

Non-Paraxial Diffraction Effect of High NA Objectives (높은 개구수를 가지는 대물렌즈의 비근축 회절효과)

  • Lee, Jong Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • By using finite ray-tracing and curve fitting, a numerical method to determine the non-paraxial pupil function of a high-NA objective is presented. MTF degradations caused by the non-paraxial diffraction effect are analyzed for on-axial imaging of a far-infrared objective and aberration-free ellipsoidal mirror system. The ellipsoidal mirror system has the same paraxial specifications as the far-infrared objective.