• Title/Summary/Keyword: Infrared Absorber

Search Result 26, Processing Time 0.028 seconds

Cross Talk among Pyroelectric Sensitive Elements in Thermal Imaging Device

  • Bang Jung Ho;Yoon Yung Sup
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.780-783
    • /
    • 2004
  • The two-dimensional modeling of the non-stationary thermal state and voltage responsivity of the sensitive elements usually used in solid-state pyroelectric focal plane arrays are presented. Temperature distributions under periodical thermal excitation and the response of the thermal imaging device, which is composed of the pyroelectric sensitive elements mounted on a single silicon substrate, are numerically calculated. The sensitive element consists of a covering metal layer, infrared polymer absorber, front metal contact, sensitive pyroelectric element, the interconnecting column and the bulk silicon readout. The results of the numerical modeling show that the thermal crosstalk between sensitive elements to be critical especially at low frequency (f < 10Hz) of periodically modulated light. It is also shown that the use of our models gives the possibility to improve the design, operating regimes and sensitivity of the device.

  • PDF

A Study on Increasing Thermal Performance of Solar Collector by Utilizing Honeycomb Structures (Honeycomb을 利용한 太陽熱 集熱器의 熱效率增大에 관한 硏究)

  • 김종보;박영칠
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.392-397
    • /
    • 1983
  • In the present study, improvement of the solar collector performance by utilizing honeycomb structures is being investigated. Installation of honeycomb structures inside of the collector induces the suppression of would-be natural convection phenomena within the collector enclosure spacing. It also minimizes infrared radiation heat loss from the collector absorber plate to the surrounding. Experiments have been carried out a collector with 40*20mm rectangular honeycombs, 20*20mm square honeycombs and without honeycombs. The results are presented for the three cases for comparisons. The collector model has been installed at various tilt angle from 15.deg. to 60.deg. measured from the ground. The influence of the tilt angle to the heat performance of the collector is also presented.

Preparation of Pt-Black Absorber by Electroplating (전기도금법에 의한 백금 흑 수광체 제조)

  • Bae, Seong-Ho;Lee, Sang-Man;Lee, Mun-Ho
    • Korean Journal of Crystallography
    • /
    • v.7 no.2
    • /
    • pp.133-146
    • /
    • 1996
  • Morphology and infrared absorbing characteristics of Pt-black prepared by electroplating have been investigated with XRD, SEM, and IR spectrophotometer. The Pt later was coated on Au-coated alumina/glass substrates for 1-5 min at pH 1.0-1.5, where a solution of platinum chloride and lead acetate was used as the electrolyte. At the electrical current density of 20-50 mA/㎠, the Pt-black showed a dendritic growth which was characterized by a "tree" shape. Absorptivity of above 90% at IR radiation of 10 m was observed for the Pt absorbing layer with an area density of ≥1.3mg/㎠.

  • PDF

Ultralow Intensity Noise Pulse Train from an All-fiber Nonlinear Amplifying Loop Mirror-based Femtosecond Laser

  • Dohyeon Kwon;Dohyun Kim
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.708-713
    • /
    • 2023
  • A robust all-fiber nonlinear amplifying loop-mirror-based mode-locked femtosecond laser is demonstrated. Power-dependent nonlinear phase shift in a Sagnac loop enables stable and power-efficient mode-locking working as an artificial saturable absorber. The pump power is adjusted to achieve the lowest intensity noise for stable long-term operation. The minimum pump power for mode-locking is 180 mW, and the optimal pump power is 300 mW. The lowest integrated root-mean-square relative intensity noise of a free-running mode-locked laser is 0.009% [integration bandwidth: 1 Hz-10 MHz]. The long-term repetition-rate instability of a free-running mode-locked laser is 10-7 over 1,000 s averaging time. The repetition-rate phase noise scaled at 10-GHz carrier is -122 dBc/Hz at 10 kHz Fourier frequency. The demonstrated method can be applied as a seed source in high-precision real-time mid-infrared molecular spectroscopy.

Characteristic Analysis and Preparation of Multi-layer TiNOx Thin Films for Solar-thermal Absorber (태양열 흡수판용 복층 TiNOx 박막의 제조와 특성 분석)

  • Oh, Dong-Hyun;Han, Sang-Uk;Kim, Hyun-Hoo;Jang, Gun-Eik;Lee, Yong-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.820-824
    • /
    • 2014
  • TiNOx multi-layer thin films on aluminum substrates were prepared by DC reactive magnetron sputtering method. 4 multi-layers of $TiO_2$/TiNOx(LMVF)/TiNOx(HMVF)/Ti/substrate have been prepared with ratio of Ar and ($N_2+O_2$) gas mixture. $TiO_2$ of top layer is anti-reflection layer on double TiNOx(LMVF)/TiNOx(HMVF) layers and Ti metal of infrared reflection layer. In this study, the crystallinity and surface properties of TiNOx thin films were estimated by X-ray diffraction(XRD) and field emission scanning electron microscopy(FE-SEM), respectively. The grain size of TiNOx thin films shows to increase with increasing sputtering power. The composition of thin films has been investigated using electron probe microanalysis(EPMA). The optical properties with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 200~1,500 nm. The TiNOx multi-layer films show the excellent optical performance beyond 9% of reflectance in those ranges wavelength.

Uncooled Metallic Thin-film Thermopile Infrared Detector (비냉각 금속 박막형 열전퇴 적외선 검지기)

  • Oh, Kwang-Sik;Cho, Hyun-Duk;Kim, Jin-Sup;Lee, Yong-Hyun;Lee, Jong-Hyun;Lee, Jung-Hee;Park, Se-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.2
    • /
    • pp.5-12
    • /
    • 2000
  • Uncooled metallic thin-film thermopile infrared detectors have been fabricated, and the figures of merit for the detectors were examined. The hot junctions of a thermopile were prepared on a $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$-membrane which acts as a thermal isolation layer, the cold junctions on the membrane supported with the silicon rim which functions as a heat sink, and Au-black was used as an infrared absorber. Infrared absorbance of Au-black, which strongly depends on the chamber pressure during Au-evaporation and its mass per area, was found to be about 90 % in the wavelength range from 3${\mu}{\textrm}{m}$ to 14${\mu}{\textrm}{m}$. Voltage responsivity, noise equivalent power, and specific detectivity of Bi-Sb thermopile infrared detector at 5 Hz-chopping frequency were about 10.5V/W, 2.3 nW/Hz$^{1/2}$, 및 $1.9\times10^{7}$ cm.Hz$^{1/2}$/w at room temperature in air, respectively.

  • PDF

Growth and Characteristics of Al2O3/AlCrNO/Al Solar Selective Absorbers with Gas Mixtures

  • Park, Soo-Young;Han, Sang-Uk;Kim, Hyun-Hoo;Jang, Gun-Eik;Lee, Yong-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.264-267
    • /
    • 2015
  • AlCrNO cermet films were prepared on aluminum substrates using a DC-reactive magnetron sputtering method and a water-cooled Al:Cr target. The Al2O3/AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF)/Al/substrate of the 5 multi-layers was prepared according to the Ar and (N2 + O2) gas-mixture rates. The Al2O3 of the top layer is the anti-reflection layer of triple AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF) layers, and an Al metal forms the infrared reflection layer. In this study, the crystallinity and surface properties of the AlCrNO thin films were estimated using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), while the composition of the thin films was systematically investigated using Auger electron spectroscopy (AES). The optical properties of the wavelength spectrum were recorded using UH4150 spectrophotometry (UV-Vis-NIR) at a range of 0.3 μm to 2.5 μm.

Encapsulation of 2,4-Dihydroxybenzophenone into Dodecylbenzenesulfonate Modified Layered Double Hydroxide for UV Absorption Properties

  • Li, Shifeng;Shen, Yanming;Liu, Dongbin;Fan, Lihui;Wu, Keke
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.392-396
    • /
    • 2014
  • New organic-inorganic composite of 2,4-dihydroxybenzophenone (BP-1) encapsulation into dodecylbenzenesulfonate (DBS) modified layered double hydroxide (LDH) was successfully prepared. The surface, structural, thermal and absorption properties of the BP-1/DBS-LDH nanohybrid was characterized by BET analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TG) and diffuse reflectance UV-Vis absorbance spectra (DRUV-vis). The interlayer configuration of composite and the adsorption mechanism of BP-1 on MgAl-DBS-LDH were discussed. It was suspected that DBS anions located in the form of monolayer arrangement with a $75^{\circ}$ anti parallel angle between dodecylbenzenesulfonate chain axis. The diffuse reflectance UV-Vis absorbance results revealed that the UV absorbing wavelength of BP-1/DBS-LDH evidently extends to about 400 nm, which shows that the BP-1/DBS-LDH has the potential application as a UV absorber.

A Study on Application of a Heat Pipe to an Evacuated Glass Tube Solar Collector (진공 유리관 태양열 집열기에 열파이프의 적용을 위한 기초 연구)

  • Kim, Chul-Joo
    • Solar Energy
    • /
    • v.12 no.2
    • /
    • pp.9-17
    • /
    • 1992
  • This is an experimental work concerning about an application of a heat pipe to an evacuated-glass-tube solar collector system. A methanol heat pipe with length of 0.7 m and diameter of 8 mm was manufactured and tested to compare its performance with that of freon thermosyphon which was originally used in a solar collector system fabricated at Thermomax Co.. Then this methanol heat pipe was utilized to be one component, i.e. heat transfer element, of the present experimental model of a solar collector. This model was performed the operation test as its absorber plate was irradiated by infrared lamps. The following results were obtained. (1) The methanol heat pipe was showed a stable operation when the variation of axial heat transport was $0{\sim}40$ watts and that of inclination angle was $30{\sim}90^{\circ}$. (2) The heat transport capability of the heat pipe was proved to be higher than that of the thermosyphon, because the heat transport limitation of the latter was occured at about 30 watt. (3) The heat pipe in a solar collector was also showed good performance as it transmitted absorbed energy.

  • PDF

Dual-wide-band absorber of truncated-cone structure, based on metamaterial

  • Kim, Y.J.;Yoo, Y.J.;Rhee, J.Y.;Kim, K.W.;Park, S.Y.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.235.1-235.1
    • /
    • 2015
  • Artificially-engineered materials, whose electromagnetic properties are not available in nature, such as negative reflective index, are called metamaterials (MMs). Although many scientists have investigated MMs for negative-reflective-index properties at the beginning, their interests have been extended to many other fields comprising perfect lenses. Among various kinds of MMs, metamaterial absorbers (MM-As) mimic the blackbody through minimizing transmission and reflection. In order to maximize absorption, the real and the imaginary parts of the permittivity and permeability of MM-As should be adjusted to possess the same impedance as that of free space. We propose a dual-wide-band and polarization-independent MM-A. It is basically a triple-layer structure made of metal/dielectric multilayered truncated cones. The multilayered truncated cones are periodically arranged and play a role of meta-atoms. We realize not only a wide-band absorption, which utilizes the fundamental magnetic resonances, but also another wide-band absorption in the high-frequency range based on the third-harmonic resonances, in both simulation and experiment. In simulation, the absorption bands with absorption higher than 90% are 3.93 - 6.05 GHz and 11.64 - 14.55 GHz, while the experimental absorption bands are in 3.88 - 6.08 GHz and 9.95 - 13.84 GHz. The physical origins of these absorption bands are elucidated. Additionally, it is also polarization-independent because of its circularly symmetric structures. Our design is scalable to smaller size for the infrared and the visible ranges.

  • PDF