• Title/Summary/Keyword: Infra-red signature

Search Result 14, Processing Time 0.019 seconds

A Feasibility Study on the Estimation of a Ship's Susceptibility Based on the Effectiveness of its Anti-Air Defense Systems (함정 대공방어시스템의 효과도를 활용한 피격성 추정 가능성 연구)

  • GeonHui Lee;SeokTae Yoon;YongJin Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.57-64
    • /
    • 2023
  • Recently, the increased use of anti-ship guided missiles, a weapon system that detects and attacks targets in naval engagement, has come to pose a major threat to the survivability of ships. In order to improve the survivability of ships in response to such anti-ship guided missiles, many studies of means to counteract them have been conducted in militarily advanced countries. The integrated survivability of a ship can be largely divided into susceptibility, vulnerability, and recoverability, and is expressed as the conditional probability, if the ship is hit, of damage and recovery. However, as research on susceptibility is a major military secret of each country, access to it is very limited and there are few publicly available data. Therefore, in this study, a possibility of estimating the susceptibility of ships using an anti-air defense system corresponding to anti-ship guided missiles was reviewed. To this, scenarios during engagement, weapon systems mounted to counter threats, and maximum detection/battle range according to the operational situation of the defense weapon system were defined. In addition, the effectiveness of the anti-air defense system and susceptibility was calculated based on the performance of the weapon system, the crew's ability to operate the weapon system, and the detection probability of the detection/defense system. To evaluate the susceptibility estimation feasibility, the sensitivity of the detailed variables was reviewed, and the usefulness of the established process was confirmed through sensitivity analysis.

Evaluating Distribution Trends of Classification Accuracy by Triangular Training Operator in SAR/VIR FCC : A Case Study of Songkhla Lake Basin in Thailand (SAR/VIR FCC에서 삼각 트레이닝 도구에 의한 분류정확도 분포추세 평가: 태국의 송클라 호수 유역을 사례로)

  • Jung Sup Um
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.3
    • /
    • pp.375-388
    • /
    • 2003
  • This study mainly focuses on evaluating how the triangular training operator could improve classification accuracy in SAR(Synthetic Aperture Radar) and VIR FCC(Visible Infra-red, False Colour Composite). The techniques for the determination of the most informative SAR/VIR combinations in the triangular space diagram, as developed tv the author of the paper, are given and the results obtained are presented. The SAR alone, VIR alone and SAR/VIR FCC classification showed trends for gradual improvement of accuracy. Accuracy distribution pattern for individual classes could be explained closely related to SAR/VIR signature components in the process of the triangular synergistic training. Due to contribution of SAR signature in training samples, it was possible to isolate major terrain features such as cloud cover area and roughness target with acceptable spatial precision. It is anticipated that this research output could be used as a valuable reference for distribution trends of classification accuracy obtained by triangular channel space based training in synergistic application.

The Trend of System Level Thermal Management Technology Development for Aero-Vehicles (항공기 시스템 레벨 열관리 기술개발 동향)

  • Kim, Youngjin;Son, Changmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Modern aircraft is facing the increase of power demands and thermal challenges. In accordance with the application of more electric technology and advanced mission requirement, aircraft system requires increase of power generation and it cause increase of internal heat generation. Simultaneously, restrictions have significantly been imposed to the thermal management system. Modern aircraft must maintain low radar observability and infra-red signature. In addition, new composite aircraft skins have reduced the amount of heat that can be rejected to the environment. The combination of these characteristics has increased the challenges faced by thermal management. In order to mitigate the thermal challenges, the concept of system level thermal management should be applied and new modeling and simulation tools need to be developed. To develop and utilize system level thermal management technology, three key points are considered. Firstly, the performance changes of subsystems and components must be assessed at an integrated thermal system. It is because that each subsystem and component interacts with other subsystems or components and it can directly effects on overall system performance. Secondly, system level thermal management requirements and solutions must be evaluated early in conceptual design process as vehicle and propulsion system configuration decisions are being made. Finally, new component level thermal management technologies must focus on reducing heat generation and increasing the availability of heat sinks.

A Feasibility Study of Seawater Injection Nozzle Prototype Development by Using 3D Printing (3D 프린팅을 이용한 해수분사용 노즐 시제품 개발의 가능성 연구)

  • Yoon, Seok-Tea;Park, Jong-Chun;Cho, Yong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.51-57
    • /
    • 2021
  • The seawater cooling system of naval ships is installed to remove the toxic substances generated by CBR (Chemical, Biological, and Radiological) warfare and reduce the infrared signature of naval ships from outside the hull. The dispersion range of the nozzle is determined according to the injection pressure of seawater and the nozzle type. Therefore, it is necessary to select the appropriate injection pressure and design the optimal nozzles to increase the seawater dispersion area and maximize the efficiency of the cooling system. In this study, the applying feasibility of 3D printing technology to produce an injection nozzle for the seawater cooling system was examined. To this end, the extruded plastic specimens were fabricated by 3D printing, and the physical properties of the specimens were estimated through tensile testing. After this, the strain and stress of the nozzle as a function of the pressure were simulated by applying the estimated results to the finite element analysis. The finite element analysis results showed that the nozzle remained within the elastic range at the optimal pressure. The nozzle was estimated to be structurally stable, and the possibility of this study was confirmed.